
76Proceedings of "Algorithms and Experiments" (ALEX98) Trento, Italy, Feb 9{11, 1998R. Battiti and A. A. Bertossi (Eds.) pp. 76-87A Seed-Growth Heuristic for Graph BisectionJoe MarksMERL{A Mitsubishi Electric Research LaboratoryCambridge, MA 02139, USAe-mail: marks@merl.comWheeler RumlDivision of Engineering and Applied Sciences, Harvard UniversityCambridge, MA 02138, USAe-mail: ruml@eecs.harvard.eduStuart M. ShieberDivision of Engineering and Applied Sciences, Harvard UniversityCambridge, MA 02138, USAe-mail: shieber@eecs.harvard.eduandJ. Thomas NgoInterval Research CorporationPalo Alto, CA 94304-1216, USAe-mail: ngo@interval.comAbstractWe present a new heuristic algorithm for graph bisection, based on an implicit notion of clus-tering. We describe how the heuristic can be combined with stochastic search procedures anda postprocess application of the Kernighan-Lin algorithm. In a series of time-equated compar-isons with large-sample runs of pure Kernighan-Lin, the new algorithm demonstrates signi�cantsuperiority in terms of the best bisections found.1 IntroductionGiven a graph G = (V;E) with an even number of vertices, the graph-bisection problem is to divideV into two equal-size subsets X and Y such that the number of edges connecting vertices in X tovertices in Y (the size of the cut set , notated cut(X;Y)) is minimized. This problem is NP-complete[7]. Graph bisection and its generalizations1 have considerable practical signi�cance, especially inthe areas of VLSI design and operations research.The benchmark algorithm for graph bisection is due to Kernighan and Lin [13]. (The e�-cient implementation of this heuristic technique was described by Fiduccia and Mattheyses [5], sothe algorithm is sometimes referred to as the Kernighan-Lin-Fiduccia-Mattheyses algorithm.) TheKernighan-Lin (KL) algorithm improves an initial random bisection by making a sequence of locallyoptimal vertex swaps between the subsets X and Y . The vertex-swap operation is also the primi-tive perturbation operator used in applications of simulated annealing to graph bisection [14, 15].1More general classes of graph-partitioning problems arise when V can be divided into more than two subsets,when the strict equality constraint on the sizes of the subsets is relaxed, and when weights are associated with thevertices and edges to be used in the constraint-satisfaction and cut-set-size computations.

A Seed-Growth Heuristic for Graph Bisection 77In spite of the folk wisdom that simulated annealing is capable of avoiding the local minima thatoften plague greedy heuristics like the KL algorithm, Johnson et al. [12] found that the relativeperformance of the two algorithms depends on the nature of the graphs being bisected: simulatedannealing has an advantage on sparse, relatively uniform graphs, but KL is better for graphs withstructure.2Recently, more aggressive attempts have been made to exploit the structure that is often foundin graphs of practical signi�cance. The common theme of these attempts is clustering: by groupingtogether vertices in tightly connected subgraphs, clusters of vertices can be treated as individual su-pernodes during the application of standard heuristics like KL or simulated annealing. The variousincarnations of the clustering idea appear to show a marked superiority over the original KL algo-rithm [2, 3, 4, 6, 9, 11, 16, 17, 18], though the degree of superiority is unclear because the reportedempirical results tend to sell the KL algorithm short, as we will argue below.The algorithm we describe in this paper can be considered a synthesis of ideas from previouswork: it includes a very simple implicit clustering heuristic, employs a stochastic search strategy (likesimulated annealing or a genetic algorithm [8]), and uses the KL algorithm for �nal re�nement ofthe computed bisections. When compared fairly with the KL algorithm (i.e., giving each algorithmequal time and ensuring that a large sample of KL runs is considered), the new algorithm exhibitssigni�cant superiority on a variety of test graphs.In the following sections we describe the algorithm, present an empirical analysis of its behavior,and conclude with a discussion of future work.2 Algorithm DescriptionOur algorithm is based on a simple seed-growth heuristic.3 We start with two disjoint, equal-sizesubsets of the vertex set to seed the two partitions, and add the remaining vertices one at a timeinto alternate partitions, at each step choosing the vertex to be added in a greedy manner. Whenadding to partition X we choose a vertex a that minimizes cut(fag; Y) � cut(fag; X); intuitively,we minimize the number of edges added to the cut set separating X and Y while maximizing thenumber of edges barred from future addition to the cut set. Thus the notion of clustering is implicitin this heuristic, as compared to heuristics in which explicit clusters are computed and manipulated[2, 3, 4, 6, 9, 11, 16, 17, 18].More formally, the algorithm can be given by the following pseudocode. (All underlined quantitiesare parameters of the heuristic that can be varied. The values given in the paper are those that gavethe best empirical results in an initial set of experiments.)Input: An undirected graph G = (V;E). jV j is assumed to be even.Output: A partition of V into subsets X and Y of size jV j2 .Procedure:1. Let the seed sets sx and sy be randomly chosen disjoint subsets of V such thatjsxj = jsyj = b 0:01 jV j c.2. X sx;Y sy.3. Repeat substeps (a) and (b) until all the vertices in V have been assigned to X or Y :(a) Find an unassigned vertex a 2 V such that cut(fag; Y)� cut(fag; X) is minimal.X X [fag.(b) Find an unassigned vertex b 2 V such that cut(fbg; X)� cut(fbg; Y) is minimal.Y Y [fbg.2The conclusions that Johnson and his colleaguesdrew from their thorough empirical analysis are more complicatedand informative than this simple pr�ecis suggests, but the statement is approximately true.3This heuristic bears some resemblance to the epitaxial-growth heuristic of Donath [4].

A Seed-Growth Heuristic for Graph Bisection 78One application of the seed-growth heuristic is not likely to be particularly useful (on averageit will be worse than a single application of the KL algorithm), but the O(jV j + jEj) seed-growthheuristic|which is roughly �ve times faster than an e�cient implementation of the KL algorithm onstandard test graphs|can be rendered e�ective by running it many times as part of a general searchprocedure. One such search procedure, a form of parallel hill climbing, is given here, though others(e.g., simulated annealing and genetic algorithms) might also be used e�ectively in combination withthe seed-growth heuristic. The KL algorithm can be used as a postprocess to achieve �nal re�nementof promising bisections found by the search procedure.Input: An undirected graph G = (V;E).Output: A partition of V into subsets X and Y of size jV j2 .Procedure:1. Randomly choose a set P of 100 pairs (sx; sy) of seed sets using Step 1 of the seed-growthheuristic.2. Compute the corresponding bisection (X;Y) for each seed-set pair (sx; sy) 2 P usingSteps 2 and 3 of the seed-growth heuristic.3. For each bisection (X;Y) that scores in the top 20%, use the KL procedure to separatelycompute a re�ned bisection (Xr ; Y r), leaving the original unchanged. Record the bestre�ned bisection found as B.4. Repeat substeps (a) through (e) 2; 500 times (or until the alloted computation time hasexpired):(a) Randomly pick a seed-set pair (sx; sy) 2 P according to a distribution which makesthe best seed set 4 times as likely to be chosen as the worst, with uniform incrementsin between.(b) Randomly select a vertex in one of sx or sy and replace it with another randomlychosen seed vertex from V � sx [sy ; call the resulting seed-set pair (s0x; s0y).(c) Compute the corresponding bisection (X 0; Y 0) using Steps 2 and 3 of the seed-growthheuristic.(d) Add (s0x; s0y) to P . If its bisection scores in the top 20%, use the KL procedureto separately compute a re�ned bisection, and update B if this re�ned bisection isbetter.(e) Remove the worst seed set from P .5. Return B.Because this algorithm combines parallel hill climbing (PHC), the seed-growth (SG) heuristic,and the KL algorithm, we will refer to it as PHC/SG+KL.3 Empirical AnalysisHeuristic algorithms for graph partitioning like the one described here cannot be evaluated in apurely analytic fashion; empirical analysis is the only way to ascertain such an algorithm's utility.Unfortunately, empirical analysis of algorithm performance is often done poorly, which sometimesleads to erroneous conclusions. In the following subsection we discuss two common errors thatare often committed in the empirical analysis of graph-partitioning algorithms. We then presentempirical results for our algorithm.

A Seed-Growth Heuristic for Graph Bisection 79KL: 20 runs X: 20 runs % improvementover KLGraph min avg min avg min avgtest4 1,376 2,098.8 1,295 1,612.2 5.9 23.2test5 2,257 4,393.8 2,138 2,606.3 5.3 40.7test6 1,309 1,723.7 1,233 1,326.2 5.8 23.1test2 1,274 1,512.7 1,281 1,357.4 -0.6 10.3test3 1,147 2,829.1 1,013 1,693.1 11.7 40.219ks 1,461 2030.7 1,368 1,625.5 6.4 20.0primary1 368 463.2 300 375.5 18.5 19.0bm1 326 436.9 303 378.6 7.1 13.3primary2 1,636 2,160.1 1,285 1,766.7 21,5 18.2Table 1: Kernighan-Lin and Algorithm X: an empirical comparison. Algorithm X runs �ve timesmore slowly than the Kernighan-Lin (KL) algorithm.3.1 CaveatsConsider the evidence presented in Table 1. (This example is based on an empirical analysisreported by Wei and Cheng [18].) The table contains the average and minimum cut-set sizes of 9graph bisections, computed from 20 runs of the KL algorithmand 20 runs of AlgorithmX.4 AlthoughAlgorithm X is �ve times more expensive than the KL algorithm, one might be tempted to concludethat the extra expense is indeed worthwhile, because its performance appears to be signi�cantlybetter. However, the di�erence in performance is due solely to the extra time a�orded Algorithm X,because Algorithm X merely returns the best of �ve runs of the KL algorithm! The moral is clear:Given the high variance of the distribution of results generated by the KL algorithm, any analysisthat does not give equal time to KL will result in an inappropriate comparison.The nature of the distribution of KL results provides a further opportunity for misleading anal-ysis. Figure 1 shows the distribution of 10,000 values returned by the KL algorithm for graph bm1,which is derived from a circuit in the standard UCLA benchmark suite. Suppose that Algorithm Yalso generates a distribution of results with better mean but smaller variance: for instance, let usassume that it essentially always �nds a bisection with cut-set size between 300 and 350 for thisgraph. If one compares the best result from m runs of Algorithm Y with the best result from nruns of the KL algorithm to determine which algorithm is better (where m and n have been chosento equate overall running times, of course), the answer one gets will be a�ected by the magnitudeof n. By inspection, roughly 1% of the values in the histogram for KL are less than 300. A simpleprobabilistic analysis shows that n must be around 690 in order for KL to have at least a 50% chanceof being declared the better algorithm by virtue of �nding the best bisection. Therefore, if one canwait the hour or so required for 1,000 runs of KL|as is typical for many applications involvinggraph partitioning|KL should be considered the better algorithm on the basis of this empiricalevidence: it will very likely �nd a bisection with a smaller cut set than Algorithm Y. When absoluteperformance is what matters most, several tens or even hundreds of runs of the KL algorithm maybe required to do it justice; a statistical analysis of the distribution of results for a given graphcan be used to estimate an appropriate minimum number of runs, if such an estimate is needed[17]. Conversely, any comparisons with KL that involve as few as 10 or 20 runs|especially againstalgorithms with good average performance but low variance|would appear to be suspect, thoughsuch comparisons are not uncommon [3, 11, 18, 19].3.2 Results4The graphs were derived from circuit hypergraphswidely used as benchmarks in the VLSI CAD community. Theyare available at http://vlsicad.cs.ucla.edu/~cheese/benchmarks.html.

A Seed-Growth Heuristic for Graph Bisection 80
Graph KL PHC/SG+KLName jV j deg p(edge) Time Runs Mean � Mean � Impr.test4 1,515 166.8 0.11017 212.8 553.0 1263.1 11.4 1245.5 9.2 1.4test5 2,595 211.3 0.08146 499.3 566.0 2032.2 33.5 1953.1 9.3 3.9test6 1,752 139.8 0.07983 228.5 639.8 1207.8 9.5 1188.4 3.5 1.6fract 149 11.7 0.07881 2.5 481.4 55.0 0.0 55.0 0.0 0.0test2 1,663 126.8 0.07630 206.0 603.4 1242.8 11.6 1243.2 17.5 -0.0test3 1,607 81.4 0.05071 114.1 586.4 911.3 17.1 828.2 1.9 9.1balu 801 38.6 0.04828 31.5 462.4 584.8 0.8 584.1 0.3 0.119ks 2,844 130.8 0.04600 317.7 568.7 1177.7 58.1 985.7 37.3 16.3primary1 833 15.0 0.01806 15.1 430.6 281.4 17.3 218.0 1.4 22.5bm1 882 14.2 0.01611 15.3 418.5 275.0 19.0 212.9 4.1 22.6primary2 3,014 24.7 0.00820 79.6 490.8 1322.9 81.7 585.4 27.0 55.7struct 1,952 8.8 0.00449 22.4 226.5 367.2 16.6 331.8 7.5 9.6industry3 15,406 23.3 0.00152 408.7 295.6 6827.2 294.8 990.0 132.2 85.5s9234 5,866 5.5 0.00093 53.9 201.5 667.1 25.6 189.1 18.9 71.7s13207 8,772 6.5 0.00074 93.6 203.2 803.4 40.2 201.3 26.9 74.9s38584 20,995 13.7 0.00065 383.8 240.5 3518.4 171.3 554.3 72.8 84.2s15850 10,470 6.3 0.00060 107.5 181.1 985.9 43.5 252.7 34.1 74.4s38417 23,949 7.2 0.00030 291.7 195.8 2280.4 73.0 546.6 71.6 76.0geo-0.01 1,000 9.4 0.00942 13.3 232.3 45.8 6.5 39.0 0.0 14.8geo-0.02 1,000 18.6 0.01858 20.9 280.4 186.0 0.0 186.0 0.0 0.0geo-0.04 1,000 36.4 0.03643 37.0 388.9 583.0 0.0 583.0 0.0 0.0geo-0.06 1,000 53.2 0.05321 53.5 452.5 1274.0 0.0 1274.0 0.0 0.0geo-0.08 1,000 72.3 0.07234 71.6 551.1 2041.0 0.0 2041.0 0.0 0.0geo-0.10 1,000 85.3 0.08535 80.6 509.9 3094.0 0.0 3094.0 0.0 0.0unif-0.01 1,000 10.0 0.01001 13.9 227.1 1359.8 5.2 1351.6 5.2 0.6unif-0.02 1,000 20.2 0.02021 23.1 239.6 3423.6 9.1 3410.9 8.0 0.4unif-0.04 1,000 39.6 0.03968 41.3 250.5 7622.8 10.2 7608.4 9.6 0.2unif-0.06 1,000 59.7 0.05979 62.2 265.2 12180.5 13.3 12166.8 10.5 0.1unif-0.08 1,000 80.1 0.08016 79.3 253.3 16838.9 17.2 16814.7 14.4 0.1unif-0.10 1,000 99.2 0.09933 101.0 266.6 21309.2 14.6 21301.6 10.4 0.0Table 2: Kernighan-Lin and PHC/SG+KL: an empirical comparison.

A Seed-Growth Heuristic for Graph Bisection 81
0

50

100

150

200

250

300

350

200 250 300 350 400 450 500 550 600 650

C
ou

nt

Solution CostFigure 1: Histogram of solutions computed by the KL algorithm for graph bm1.Table 2 contains an empirical comparison of the KL and PHC/SG+KL. The algorithms weretested on three classes of problems: 18 graphs derived from VLSI benchmark circuit hypergraphs,6 uniform random graphs, in which each possible edge is generated with �xed probability, and 6geometric random graphs, in which vertices are randomly placed on a unit square and connectedto all neighbors within a �xed radius. One would expect the geometric random graphs, but notthe uniform ones, to exhibit exploitable structure [12]. The names for the random graphs indicatethe expected probability of existence of a possible edge.5 The values we use were chosen to matchthe range of edge probabilities in the circuit graphs, which we take as representative of importantpractical problems.For each graph in our test suite, the following data are presented:1. Graph cardinality: The number of vertices in the graph (jV j).2. Mean degree: The average number of edges incident upon a vertex in the graph.3. Edge probability: The probability of a possible edge appearing in the graph.4. Running time: The running time allowed for each algorithm on the graph, in seconds on aDEC AlphaStation 500/500. This was computed by timing 2,500 iterations of the PHC/SGalgorithm (as explained below, this variant is just PHC/SG+KL without the KL re�nementsteps). The running times range from 2.5 seconds for graph fract to 8.3 minutes for graphtest5.5. Number of KL runs: The number of runs of the KL algorithm that will take an amount oftime equivalent to that required for the PHC/SG algorithm.6. Average minimum cut-set size for KL: The average minimum cut-set size found over 25 testsof k runs each, where k is the number of runs required for time equivalence with the PHC/SGalgorithm.7. Standard deviation of minimum cut-set size for KL: The standard deviation of the minimumcut-set size found over the 25 tests.5As Johnson et al. explain, for a geometric random graph with expected degree d, one uses a radius ofpd=(jV j�).

A Seed-Growth Heuristic for Graph Bisection 828. Average minimum cut-set size for PHC/SG+KL: The average minimum cut-set size foundover 25 runs of the PHC/SG+KL algorithm.9. Standard deviation of minimum cut-set size for PHC/SG+KL: The standard deviation of theminimum cut-set sizes found over the 25 tests.10. Improvement over KL: The average improvement of the PHC/SG+KL algorithm over the KLalgorithm, expressed as a percentage of the average minimum cut-set size for KL.In all cases, PHC/SG+KL generates solutions that are at least as good as those from the large-sample, time-equated tests of KL. The reduction in the size of the cut set ranges from none to85%.The results for PHC/SG+KL may appear ordinary relative to the results that have been reportedrecently for various clustering heuristics.6 However, this is due in large part to the better resultswe report for KL because of the large number of KL runs we use, over 300 on average. Recall thatTable 1 shows the improvement one can get by taking the best of 100 runs of the KL algorithmversus the best of 20 runs; moreover, the best of 300 runs is quite an improvement, on average, overthe best of 100 runs. Thus, our results cannot be directly compared to those previously published.Preliminary experiments with an implementation of one of the so-called spectral methods for graph-bisection [1, 10] indicates that it fares worse than time-equated KL. We hope to complete a fullcomparison with other algorithms in the near future.An interesting aspect of the data is the variation in relative performance of the algorithms:although PHC/SG+KL is superior to KL across the board, the degree of superiority di�ers markedly.For some graphs (balu, Test02, Test04, and Test06) the improvement is very small, yet for others(primary2, s28584, and industry3, for example) the improvement is substantial. We will investigatethese di�erences further below.For hybrid algorithms that involve the KL algorithm as a postprocess, the following questionnaturally arises: How much work is the KL part doing? Table 3 presents results of the PHC/SGalgorithm, which is the same as PHC/SG+KL, but without the KL postprocess re�nement in steps3 and 4d. PHC/SG still returns substantially better results than KL for many graphs, but it doesnot exhibit the consistent superiority of PHC/SG+KL. One possible explanation could be that 2,500iterations is simply not long enough for the search procedure to discover e�ective seed sets. We canexamine the progress of the search to test this hypothesis.Figure 2 shows a trace of the progress of the three algorithms on graph test3. Error barsrepresent standard deviations over 25 runs, calculated separately above and below the mean. It isclear from the plot (which is typical of those graphs for which PHC/SG is not markedly superiorto KL) that the search procedure is still making progress when it is cut short after 2,500 itera-tions. Furthermore, this close analysis reveals that the KL re�nement is e�ective even without thesearch procedure (although it does improve detectably with additional time). Although our pre-vious comparison, allowing time for hundreds of runs of KL, more closely re
ects applications inwhich quality is paramount, there are situations in which computation time is the limiting resource.Figure 3 summarizes the performance of the three algorithms on the circuit-derived graphs whengiven just enough time for PHC/SG+KL to initialize its population (about 4% of the times listedin table 2). Each result is plotted according to the graph's edge probability. Solution costs havebeen normalized against KL, so �10 refers to a 10% reduction in the size of the cut set. The plothighlights a signi�cant feature of our algorithm: there seems to be a correlation between the edgeprobability in the graph and the improvement it exhibits over the Kernighan-Lin algorithm. Figures4{6 summarize the information presented previously in tables 2 and 3 and con�rm that the edgeprobability correlation holds when the algorithms are given abundant computation time, and for allthree classes of graphs examined.6Unfortunately a direct comparison with other algorithms on the circuit graphs based on published �gures is notcurrently possible, because the common convention is to report cut-set size in terms of nets (edges in a hypergraph)rather than edges in the graph derived from the original hypergraph, which is what we have done here for consistencywith other presentations [2, 9, 12]. Furthermore, we bisect the graph on the basis of the number of vertices in eachhalf of the bisection, not the weighted sum of the areas associated with them.

A Seed-Growth Heuristic for Graph Bisection 83
Graph KL PHC/SGName jV j deg p(edge) Time Runs Mean � Mean � Impr.test4 1,515 166.8 0.11017 212.8 553.0 1263.1 11.4 1267.9 19.6 -0.4test5 2,595 211.3 0.08146 499.3 566.0 2032.2 33.5 2116.8 75.5 -4.2test6 1,752 139.8 0.07983 228.5 639.8 1207.8 9.5 1220.7 15.1 -1.1fract 149 11.7 0.07881 2.5 481.4 55.0 0.0 55.0 0.0 0.0test2 1,663 126.8 0.07630 206.0 603.4 1242.8 11.6 1260.4 18.7 -1.4test3 1,607 81.4 0.05071 114.1 586.4 911.3 17.1 862.5 21.8 5.4balu 801 38.6 0.04828 31.5 462.4 584.8 0.8 585.9 0.6 -0.219ks 2,844 130.8 0.04600 317.7 568.7 1177.7 58.1 1203.2 158.6 -2.2primary1 833 15.0 0.01806 15.1 430.6 281.4 17.3 224.8 4.6 20.1bm1 882 14.2 0.01611 15.3 418.5 275.0 19.0 219.2 4.9 20.3primary2 3,014 24.7 0.00820 79.6 490.8 1322.9 81.7 745.4 41.0 43.7struct 1,952 8.8 0.00449 22.4 226.5 367.2 16.6 347.7 10.7 5.3industry3 15,406 23.3 0.00152 408.7 295.6 6827.2 294.8 2788.6 198.1 59.2s9234 5,866 5.5 0.00093 53.9 201.5 667.1 25.6 287.3 33.3 56.9s13207 8,772 6.5 0.00074 93.6 203.2 803.4 40.2 335.6 31.8 58.2s38584 20,995 13.7 0.00065 383.8 240.5 3518.4 171.3 1935.5 155.3 45.0s15850 10,470 6.3 0.00060 107.5 181.1 985.9 43.5 471.7 34.7 52.2s38417 23,949 7.2 0.00030 291.7 195.8 2280.4 73.0 1377.5 94.8 39.6geo-0.01 1,000 9.4 0.00942 13.3 232.3 45.8 6.5 40.2 1.4 12.3geo-0.02 1,000 18.6 0.01858 20.9 280.4 186.0 0.0 186.0 0.0 0.0geo-0.04 1,000 36.4 0.03643 37.0 388.9 583.0 0.0 585.4 3.1 -0.4geo-0.06 1,000 53.2 0.05321 53.5 452.5 1274.0 0.0 1276.0 2.3 -0.2geo-0.08 1,000 72.3 0.07234 71.6 551.1 2041.0 0.0 2041.0 0.0 0.0geo-0.10 1,000 85.3 0.08535 80.6 509.9 3094.0 0.0 3094.8 2.2 -0.0unif-0.01 1,000 10.0 0.01001 13.9 227.1 1359.8 5.2 1392.4 5.5 -2.4unif-0.02 1,000 20.2 0.02021 23.1 239.6 3423.6 9.1 3480.7 8.8 -1.7unif-0.04 1,000 39.6 0.03968 41.3 250.5 7622.8 10.2 7718.0 9.0 -1.2unif-0.06 1,000 59.7 0.05979 62.2 265.2 12180.5 13.3 12297.0 17.2 -1.0unif-0.08 1,000 80.1 0.08016 79.3 253.3 16838.9 17.2 16963.2 15.3 -0.7unif-0.10 1,000 99.2 0.09933 101.0 266.6 21309.2 14.6 21465.4 16.2 -0.7Table 3: Kernighan-Lin and PHC/SG.

A Seed-Growth Heuristic for Graph Bisection 84
800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

0 20 40 60 80 100 120 140 160 180

C
os

t o
f

B
es

t S
ol

ut
io

n

Running Time (in seconds)

Mean of 25 runs of PHC/SG
Standard deviation

Mean of 25 runs of KL
Standard deviation

Mean of 25 runs of PHC/SG+KL
Standard deviation

Figure 2: Performance of the three algorithms on graph test3.
-100

-50

0

50

100

150

0 0.02 0.04 0.06 0.08 0.1 0.12

C
os

t o
f

B
es

t S
ol

ut
io

n
(%

 d
if

fe
re

nc
e

fr
om

 K
L

)

Edge Probability in Graph

PHC/SG
KL

PHC/SG + KL

Figure 3: Performance of the three algorithms on the circuit graphs when given very little time.

A Seed-Growth Heuristic for Graph Bisection 85
-100

-80

-60

-40

-20

0

20

0 0.02 0.04 0.06 0.08 0.1 0.12

C
os

t o
f

B
es

t S
ol

ut
io

n
(%

 d
if

fe
re

nc
e

fr
om

 K
L

)

Edge Probability in Graph

PHC/SG
KL

PHC/SG + KL

Figure 4: Summary of the three algorithms on the circuit graphs.
-15

-10

-5

0

5

10

15

20

25

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

C
os

t o
f

B
es

t S
ol

ut
io

n
(%

 d
if

fe
re

nc
e

fr
om

 K
L

)

Edge Probability in Graph

PHC/SG
PHC/SG + KL

KL

Figure 5: Summary of the three algorithms on geometric random graphs.

A Seed-Growth Heuristic for Graph Bisection 86
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

C
os

t o
f

B
es

t S
ol

ut
io

n
(%

 d
if

fe
re

nc
e

fr
om

 K
L

)

Edge Probability in Graph

PHC/SG
KL

PHC/SG + KL

Figure 6: Summary of the three algorithms on uniform random graphs.4 ConclusionsThe PHC/SG+KL algorithm is undoubtedly an improvement over the KL algorithm, but it remainsto be seen how e�ective it is relative to other recently reported algorithms that use explicit clusteringheuristics. Our agenda for future work includes a thorough time-equated empirical comparison ofthe most promising clustering-based heuristics for graph bisection, including PHC/SG+KL, and anattempt to discover further correlates between quantitative measures of a graph's structure and theperformance of di�erent algorithms.Furthermore, we plan to generalize the PHC/SG+KL algorithm to other graph-partitioningproblems. In commonly encountered problems of practical signi�cance, more than two partitionsare permitted, the requirement of exact equality of partition sizes is relaxed, and the vertices andedges are weighted. The simple nature of the seed-growth heuristic should allow for straightforwardgeneralization to these cases.References[1] E. R. Barnes. An algorithm for partitioning the nodes of a graph. SIAM Journal of Algebraicand Discrete Methods, 3(4):541{550, 1982.[2] T. Bui, C. Heigham, C. Jones, and T. Leighton. Improving the performance of the Kernighan-Lin and simulated annealing graph bisection algorithms. In Proceedings of the 26th ACM/IEEEDesign Automation Conference, pages 775{778, 1989.[3] J. Cong and M. Smith. A parallel bottom-up clustering algorithm with applications to cir-cuit partitioning in VLSI design. In Proceedings of the 30th ACM/IEEE Design AutomationConference, pages 755{760, Dallas, TX, June 1993.

A Seed-Growth Heuristic for Graph Bisection 87[4] W. E. Donath. Logic partitioning. In B. Preas and M. Lorenzetti, editors, Physical DesignAutomation of VLSI Systems, pages 65{86. Benjamin/Cummings, 1988.[5] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network partition-ing. In Proceedings of the 19th Design Automation Conference, pages 175{181, Las Vegas, NM,1982.[6] J. Garbers, H. J. Pr�omel, and A. Steger. Finding clusters in VLSI circuits. In Proceedings ofthe IEEE International Conference on Computer-Aided Design, pages 520{523, Santa Clara,California, Nov. 1990.[7] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simpli�ed NP-complete graph problems.Theoretical Computer Science, 1(3):237{267, 1976.[8] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, New York, 1989.[9] M. K. Goldberg and M. Burstein. Heuristic improvement technique for bisection of VLSInetworks. In Proceedings of the IEEE International Conference on Computer Design, pages122{125, Port Chester, NY, 1983.[10] L. Hagen and A. B. Kahng. Fast spectral methods for ratio cut partitioning and clustering.In Proceedings of the IEEE International Conference on Computer-Aided Design, pages 10{13,1991.[11] L. Hagen and A. B. Kahng. A new approach to e�ective circuit clustering. In Proceedings of theIEEE/ACM International Conference on Computer-Aided Design, pages 422{427, Santa Clara,California, Nov. 1992.[12] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimization by simu-lated annealing: An experimental evaluation; part I, graph partitioning. Operations Research,37(6):865{892, Nov.-Dec. 1989.[13] B. Kernighan and S. Lin. An e�cient heuristic procedure for partitioning graphs. The BellSystem Technical Journal, 49(2):291{307, Feb. 1970.[14] S. Kirkpatrick. Optimization by simulated annealing: Quantitative studies. Journal of Statis-tical Physics, 34:975{986, 1984.[15] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi. Optimization by simulated annealing.Science, 220:671{680, May 1983.[16] B. Krishnamurthy. An improved min-cut algorithm for partitioning VLSI networks. IEEETransactions on Computers, C-33:438{446, 1984.[17] T.-K. Ng, J. Old�eld, and V. Pitchumani. Improvements of a mincut partition algorithm. InProceedings of the IEEE International Conference on Computer Design, pages 470{473, SantaClara, CA, 1987.[18] Y.-C. Wei and C.-K. Cheng. A two-level two-way partitioning algorithm. In Proceedings of theIEEE International Conference on Computer-Aided Design, pages 516{519, Santa Clara, CA,Nov. 1990.[19] Y.-C. Wei and C.-K. Cheng. Ratio cut partitioning for hierarchical design. IEEE Transactionson Computer-Aided Design, 10(7):911{921, July 1991.

