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Abstract

We present a computational imaging system, inspired by the opti-
cal coherence tomography (OCT) framework, that uses interferom-
etry to produce decompositions of light transport in small scenes
or volumes. The system decomposes transport according to various
attributes of the paths that photons travel through the scene, includ-
ing where on the source the paths originate, their pathlengths from
source to camera through the scene, their wavelength, and their po-
larization. Since it uses interference, the system can achieve high
pathlength resolutions, with the ability to distinguish paths whose
lengths differ by as little as ten microns. We describe how to con-
struct and optimize an optical assembly for this technique, and we
build a prototype to measure and visualize three-dimensional shape,
direct and indirect reflection components, and properties of scatter-
ing, refractive/dispersive, and birefringent materials.

CR Categories: I.4.1 [Image Processing and Computer Vision]:
Digitization and Image Capture—Imaging geometry;

Keywords: light transport, interference, wave optics

1 Introduction
In imaging, photons leave a source, travel through a scene, and are
collected by a camera. A conventional image measures the sum of
all photons that arrive at each camera pixel, regardless of where on
the source they originate, or which path they travel from there to
the camera (Figure 1). This summation conflates information about
the shapes and materials in the scene. In this paper, we show how
interferometry can be used to measure decompositions of these per-
pixel sums, distinguishing between photon paths that differ in their
length and location of origin.

In discrete terms, where the camera sensor is partitioned into P
area elements (“pixels”) and the source is partitioned into L area
elements, the energy that is transferred from source to camera is
often described by a P ×L matrix T called the light transport ma-
trix. Each entry Tpl in this matrix represents the fraction of photons
following paths originating at the lth source element and arriving at
the pth camera element. With reference to Figure 1, orange versus
blue paths would correspond to entries Tpl for different values of
source location l. Conventional imaging simply measures the im-
age i (a P -vector) for some pattern l (an L-vector) projected from
the source according to the light transport equation [Ng et al. 2003]

i = Tl. (1)

There are a variety of computational imaging methods for mea-
suring elements of the transport matrix. This has applications in
image-based rendering, image editing, and measuring scene shape
in the presence of translucency and interreflections.

Each element of the transport matrix in Equation (1) still represents
a sum of different scene paths. As depicted by the blue paths of Fig-
ure 1, sub-surface scattering and interreflections mean that there are
typically many paths that originate at the same source element and
arrive at the same camera element but take different routes through
the scene. Computational imaging can be used to analyze these as
well, by decomposing each entry Tpl of the transport matrix ac-
cording to the contributions from photon paths that have different
optical lengths τ . This leads to the notion of a pathlength-resolved
light transport matrix Tτ , τ ∈ {τmin, . . . , τmax}, where pathlengths

are discretized into a finite set of ∆τ -sized length intervals. The full
light transport matrix can then be written as

T =
∑
τ

Tτ . (2)

Each entry T τpl is the fraction of photons originating at the lth source
element that arrive at the pth camera element having traveled paths
whose optical lengths are in the interval τ ± ∆τ/2. There is a
growing number of methods for measuring either entire projections
or isolated elements of the pathlength-resolved transport matrix. In
addition to enhancing the applications listed above, these decom-
positions can be used to visualize light-in-flight through table-top
scenes, and for “imaging around corners.”

We introduce a new computational imaging system that uses opti-
cal interferometry to produce high-fidelity light transport decom-
positions. Our system uses optical configurations that are varia-
tions of the classical Michelson interferometer, and our analysis
builds on techniques that have been used for optical coherence to-
mography (OCT). Our system is complementary to existing compu-
tational photography methods for producing such decompositions,
excelling in use cases where it is necessary to image small scenes
at very high spatial and pathlength resolutions. In particular, the
use of interferometry allows our system to achieve pathlength res-
olutions as low as 10µm, which is necessary to analyze transport
events caused by material effects like dispersion and scattering.

Our paper begins with background on the Michelson interferome-
ter and the notions of spatial and temporal coherence length. We
then introduce a mathematical model of interferometry in terms
of (a continuous version of) the pathlength-resolved light transport
matrix. We use it to show how sources with different coherence
properties enable different kinds of light transport decompositions,
differentiating light paths in terms of their endpoint locations, their
optical lengths, or combinations of these two. We also character-
ize resolution and noise performance, and present a performance-
optimized optical design that additionally allows resolving trans-
port in terms of wavelength and polarization. Our prototype has
three spectral channels, two polarization channels, a working vol-
ume of 2 cm H × 2 cm W × 1 cm D, and spatial and pathlength
resolutions that are both 10µm. We use this prototype to obtain
micron-scale decompositions of light transport in scenes contain-
ing reflection, refraction, dispersion, scattering, and birefringence.

2 Related Work

Light transport decomposition. Methods for decomposing light
transport, both spatially and in terms of pathlength, can be de-
scribed as capturing different images i of a static scene under uni-
form illumination l = 1 according to the equation

i =
∑
τ

w(τ)(M�Tτ )1. (3)

This is a pathlength-resolved variant of the transport probing equa-
tion of O’Toole et al. [2012]. The operator � represents pointwise
multiplication (Hadamard product). M is a P × L binary matrix:
setting Mpl to zero removes contributions of paths beginning at
point l on the source and arriving at pixel p on the sensor. Simi-
larly, w(τ) is a scalar binary function that can be used to remove
contributions from paths of length τ . In conventional imaging, M
and w(τ) are equal to 1 everywhere, and Equation (3) reduces to
the standard light transport Equation (1) with uniform illumination.
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Figure 1: Differentiating light paths. A pixel in a conventional
image measures the sum of all lights paths arriving at that pixel.
Entries of a light transport matrix distinguish paths with different
starting locations (orange vs. blue), and entries of a “pathlength-
resolved” light transport matrix additionally distinguish paths of
different lengths (e.g., light vs. dark blue).

Computational imaging methods for light transport decomposition
collect measurements with different M and w(τ). We will use Fig-
ure 1 to visualize paths captured by various approaches.

Spatial decomposition methods induce different matrices M while
keeping w(τ) = 1 everywhere. With reference to Figure 1, these
methods can be used to record contributions from only the blue or
only the orange paths. By using different arrangements of a cam-
era and a projector, and different sensor and illumination coding
strategies, these methods capture individual elements of the trans-
port matrix, or sparse or low-rank approximations to it [Sen et al.
2005; Peers et al. 2009; Wang et al. 2009; Bai et al. 2010; O’Toole
and Kutulakos 2010; O’Toole et al. 2012; O’Toole et al. 2014a].

There are also methods that decompose according to pathlength
only, using a matrix M = 1 and controllable functions w(τ). Re-
ferring to Figure 1, this allows measuring the superposition of all
paths (blue and orange) that have the same length. This has been
dubbed transient imaging and can be used to produce light-in-flight
visualizations of photons propagating in a scene. Implementations
include using a combination of pulsed laser and ultra-fast detec-
tor [Velten et al. 2013; Wu et al. 2014b; Wu et al. 2014a], or a
combination of source and camera (time-of-flight sensor) that are
synchronously modulated at radio-frequencies in time [Heide et al.
2013; Kadambi et al. 2013; O’Toole et al. 2014b; Heide et al. 2014].
In the latter case, the performance critically depends on the method
used to solve the so-called “multi-path interference” problem [Dor-
rington et al. 2011; Heide et al. 2014]. The equivalence of path-
length decomposition and light propagation has also been exploited
for efficient rendering of light-in-flight [Jarabo et al. 2014].

Finally, there exist methods that provide simultaneous decompo-
sitions of space and pathlength. In the computer graphics liter-
ature, these fall into two categories. First are methods that de-
compose transport into a direct component (“one-bounce paths”)
and an indirect or global component (“multi-bounce paths”) [Na-
yar et al. 2006; Gupta, M. and Agrawal, A. and Veeraraghavan, A.
and Narasimhan, S.G. 2011; Reddy et al. 2012]. These imply a
matrix M that has only one non-zero entry per row, and a spatially-
adaptive function w(τ) that selects for each such non-zero entry
the shortest pathlength τ for which transport is non-zero. In these
cases, the pathlength resolution ∆τ determines how clean the re-
sulting separations are, with sharper resolutions allowing less of
the global component—such as that caused by sub-surface scatter-
ing in Figure 1—to bleed into the direct one. Second is the temporal
frequency probing method of O’Toole et al. [2014b]. This allows
decompositions with more general choices of matrix M and func-
tion w(τ), for instance capturing transient images corresponding to
fixed spatial probing patterns M.

Interferometry. Optical interferometry refers to a large set of
imaging techniques that exploit interference between one or more
electromagnetic fields [Hariharan 2003]. Despite their popularity in

other disciplines, interferometric techniques have rarely been used
for computer graphics. An exception is Cossairt et al.’s [2014] use
of a Michelson interferometer for refocusing.

Many interferometric techniques can be interpreted using Equa-
tion (3). Abramson [1983] used holographic techniques to cre-
ate visualizations of light-in-flight similar to recent transient imag-
ing; and the connection between interferometry and time-of-flight
sensors has been discussed elsewhere [Schwarte et al. 1995; Luan
2001]. Here, we re-establish this relationship, and we expand it to
relate interferometry to other types of light path decompositions.

Among interferometric techniques, the one most closely related is
optical coherence tomography (OCT) [Huang et al. 1991], which
is used for range scanning and visualizing volume cross-sections
at micron resolutions. There are many variants based on single or
multiple shots (Fourier-domain vs. time-domain OCT) and single-
or full-field illumination. In our paper, we adapt a full-field, time-
domain OCT configuration for broader computational imaging. We
re-interpret conventional OCT measurements using Equation (3),
and then build on this to measure other light transport decomposi-
tions with different M andw(τ) choices. We focus on time-domain
OCT, as opposed to Fourier-domain, because it additionally allows
decomposing transport according to wavelength and polarization.

Comparison and trade-offs. The main advantage of using in-
terferometry to decompose transport is high pathlength resolution.
Fempto-second lasers and time-of-flight sensors can achieve path-
length resolutions of about 600µm and 10, 000µm, respectively.
By comparison, we achieve pathlength resolutions of about 10µm.
Other interferometric techniques could be used to produce resolu-
tions that are even higher, reaching sub-micron scales, for instance
using very wide-band sources and post-capture processing that in-
cludes phase shifting. However, this would come at the expense
of the ability to probe different spectral channels. Since we are
interested in measuring wavelength-dependent effects, such as dis-
persion, birefringence, and scattering, we do not attempt to push
pathlength resolution to those limits here.

This increased pathlength resolution is valuable in cases where it
is necessary to obtain high-fidelity scans of small volumes, such as
in laboratory material measurements or in scenes with natural mi-
crostructures. While macrophotography readily provides a way to
image such scenes at spatial resolutions that approach the diffrac-
tion limit (a few microns), comparable pathlength resolutions can-
not be achieved without the use of interferometry.

The main disadvantages of using interferometry to decompose
transport are reductions in field of view, depth of field, and speed of
capture. Our working volume can only accommodate material sam-
ples or small objects, and our system is not appropriate for table-top
or room-scale scenes. As we explain in Section 3, our method op-
erates by slicing a volume in micron-sized depth intervals. This
means that measuring a 1 cm deep volume requires 10, 000 images
and several hours, during which the scene must remain still. This
is exacerbated by the fact that our optical setup is very sensitive to
vibrations induced by environment sources, and even micron-scale
vibrations can severely affect our measurements.

Another limitation of our approach relative to non-interferometric
techniques is reduced flexibility in the spatial probing patterns M.
We control these patterns by using mirrors of different shapes (Fig-
ure 6). This means that we can only induce patterns that corre-
spond to manufacturable mirrors, and that changing the pattern M
requires substantial manual reconfiguration. This is in stark con-
trast to spatial probing methods [O’Toole et al. 2012; O’Toole et al.
2014a; O’Toole et al. 2014b] that allow complex patterns and sim-
ple reconfiguration in software.

The third limitation of our approach is shared by all methods for
pathlength decomposition, namely, the reduced signal-to-noise ra-
tio when multiple paths with widely varying energies arrive at the
same pixel. In extreme cases, this makes it difficult or impossible
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Figure 2: Michelson interferometer. An input beam is split by a
beamsplitter into two copies that traverse to mirrorsMr andMs at
distances dr and ds from the splitter, respectively. The two copies
reflect back and recombine at the beamsplitter before being imaged.
Insets (i) and (ii) show images for two positions of mirror Mr that
either induce interference (d′r ≈ ds) or do not (dr 6= ds). Inset (iii)
shows a setup that can be used to achieve oblique illumination.

to resolve low-energy paths, and unlike conventional HDR photog-
raphy, this cannot be solved by capturing multiple exposures.

3 Optics Background
We first present the background necessary for understanding inter-
ferometry and our interpretation of it as decomposing transport.
Our description of temporal coherence follows Goodman [2000],
and our description of spatial coherence follows Levin et al. [2013].

Interferometry begins with the Michelson interferometer, shown in
Figure 2, with a light source of simultaneously small temporal co-
herence and spatial coherence. We will explain these notions and
the operation of the Michelson interferometer intuitively, and then
describe them analytically. The setup uses a beamsplitter to split
the light wave emitted from the light source in two parts. One part
is transmitted towards a reference mirrorMr placed on a translation
stage. The other part is reflected towards the target scene, which for
our intuitive explanation is another mirrorMs, but can generally be
any arbitrary scene. We refer to the sides of the setup containing the
reference and target mirror as the reference arm and target arm, re-
spectively. Both waves are then reflected, recombined at the beam-
splitter, and imaged by a camera. We denote by dr, ds the distance
between the beamsplitter and mirrors Mr and Ms, respectively.

The small temporal coherence of the light source means that, when
|dr − ds| is larger than an amount called the temporal coherence
length of the source, the two waves do not interfere and the cam-
era will measure an image equal to the sum of the two images of
the mirrors, as shown in Figure 2.ii. If instead we use the trans-
lation stage to reposition Mr to a position d′r so that |ds − d′r| is
smaller than the coherence length, the two waves will interfere and
the camera will measure a fringe pattern, as shown in Figure 2.i.

When we replace mirrorMs with a general scene, we can capture a
sequence of images at different translations of the reference mirror
Mr . By detecting interference patterns in the measured images, we
can separate light paths of different pathlengths, up to a resolution
equal to the temporal coherence length. We can additionally use
sources with small spatial coherence to separate paths by location.
This is because only light-paths that begin sufficiently close to each
other on the source (i.e., are less than one spatial coherence length
apart) and combine at the same sensor pixel will interfere. Note
that this discussion is based on the coaxial interferometer design
of Figure 2, which is the design we use exclusively in this paper.
Oblique illumination is achievable, but it would require additional
components as shown in Figure 2.iii.

This discussion highlights the importance of temporal and spatial
coherence, which we will now describe analytically. They are wave

(a) (b) (c) (d) (e)
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Figure 3: Notation and coordinate system used in Sections 3 and 4.
(a) The parts of the Michelson interferometer corresponding to the
scene and reference arms. (b-e) The scene and reference arms
shown unfolded in the same coordinate system. (b) and (c) show
the target arms, with lighting and camera respectively. (d) and (e)
show the reference arms, with lighting and camera respectively.

phenomena, but scalar wave theory is sufficient to describe them,
without having to employ the full complexity of electromagnetic
theory. To simplify notation, and without loss of generality, we
consider a two-dimensional world, with spatial points represented
by their (x, z) coordinates. Figure 3 shows the coordinate system.

3.1 Temporal Coherence

We begin by assuming that the source produces a plane wave prop-
agating in the z direction, so that the electromagnetic field is in-
dependent of x. Such a wave can be produced by transferring the
output of a point source through a lens, as in Figure 8. If the wave
is monochromatic at wavelength λ, the electromagnetic field at po-
sition (x, z) and time t can be described as

u(x, z, t) = a · exp (ik(−zη + ct)) , (4)

where c is the speed of light in vacuum, η is the refractive index of
the medium, k = 2π/λ is the wavenumber, and a is the complex
amplitude of the source.

Real waves are not perfectly monochromatic, but are better de-
scribed as superpositions of plane waves of different wavelengths,

u(x, z, t) =

∫
k

ak · exp (ik(−zη + ct)) dk, (5)

where the complex number ak is the amplitude of each compo-
nent. Typical real world sources can be modeled [Goodman 2000]
by assuming that ak are random variables with phases sampled uni-
formly and powers |ak|2 sampled from a Gaussian with mean k̄ and
standard deviation ∆k,

|ak|2 ∝ e
− (k−k̄)2

2∆2
k . (6)

The standard deviation ∆k is the spectral bandwidth of the source:
smaller values of ∆k indicate a more monochromatic source.

Now suppose a sensor records at pixel x a measurement I(x) of the
superposition of two copies of the wave u from Equation (5) that
have traveled different distances z and z + τ . The measurement is
averaged over exposure time, producing

I(x) =
〈
|u(x, z, t) + u(x, z + τ, t)|2

〉
t

(7)

= 2Io(x) + 2 Re {corr(x, τ)} , (8)

where 〈·〉t denotes expectation over time, Io(x) =
〈
|u(x, z, t)|2

〉
t

is the intensity of the original wave, and

corr(x, τ) = 〈u(x, z, t)∗ · u(x, z + τ, t)〉t (9)

is the correlation of the two waves. If zero correlation exists be-
tween u and its shifted copy, the measurement will simply be equal
to twice the intensity of the original wave, 2Io(x). If positive

3



To appear in ACM TOG 0(0).

correlation (constructive interference) or negative correlation (de-
structive interference) exists, the measurement will vary between
0 and 4Io(x), depending on the relative shift τ of the two copies.
The maximum value is achieved when there is perfect correlation
(τ = 0). We will refer to the real part of the field correlation, equal
to the difference I(x) − 2Io(x), as the interference contrast. The
temporal coherence length of the source, which we denote by Lc,
is the largest value of τ for which significant correlation exists and
therefore significant interference contrast is measured. To evaluate
the temporal coherence length, we use the following claim.

Claim 1. The field correlation magnitude is a Gaussian with stan-
dard deviation inversely proportional to the spectral bandwidth ∆k,

corr(x, τ) = eik̄τG
∆−1
k

(τ), (10)

where
G

∆−1
k

(τ) = e−
1
2

(∆kτ)2 . (11)

Before proving the above property, we consider and experimental
visualization of the result. Figure 4 shows the interference com-
ponent we measured using the Michelson interferometer setup of
Figure 2, plotted as a function of pathlength difference. As shown
in the close-up plot, the profile looks like a fringe pattern, which
varies as a function of the phase difference introduced by τ . When
k̄τ = (2p + 1)π (p any integer), we observe destructive inter-
ference (zero intensity); and when k̄τ = (2p)π, we observe con-
structive interference (twice the signal intensity). As shown in the
zoomed-out plot, the contrast of the fringe pattern decays and even-
tually becomes almost zero once the pathlength difference τ ex-
ceeds some amount. We can define this amount as the temporal
coherence length of the source, which from Claim 1 is the standard
deviation of the correlation window, Lc = 1/∆k. We observe that
Lc is inversely proportional to spectral bandwidth. The larger the
bandwidth of the source, the smaller the temporal coherence length,
and therefore the higher the resolution at which we can discriminate
between paths of different lengths.

Proof of Claim 1. To evaluate the correlation, we note from
Equation (5) that the Fourier transform of u(x, z, t) over the time
domain is the signal akeikz . Similarly the Fourier transform of
u(x, z + τ, t) is akeikτeikz . Using Parseval’s theorem, the inner
products in the temporal and frequency domains are equivalent,

corr(x, τ) =

〈∫
|ak|2 · eikτ dk

〉
. (12)

Then, using also Equation (6), we have

corr(x, τ) =

∫
e
− (k−k̄)2

2∆2
k · eikτ dk. (13)

Equation (13) is (up to a constant) the Fourier transform of a Gaus-
sian with s.t.d ∆k. For a Gaussian centered at zero, the Fourier
transform is a Gaussian with inverse s.t.d. 1/∆k. As the Gaussian
is not centered at zero, this is multiplied by a sinusoid representing
the phase shift, resulting in Equation (10). �

3.2 Spatial Coherence

So far we have considered the case of a perfect plane wave propa-
gating along the z axis. Such a wave has perfect spatial correlation,
in the sense that if we know the field value u(x, z, t), we can also
predict its value at any spatial shift u(x + ξ, z, t). This is only re-
alizable by using a lens to collimate the output of a source that has
infinitesimal area. However, many real sources have larger effec-
tive areas. This induces another effect known as spatial incoher-
ence [Levin et al. 2013], which also affects interference contrast.

Each point on an area source emits an independent wave, resulting

cumulatively in a collection of independent plane waves uθ(x, z, t)
over a small angular range θ ∈ [−Θ/2,Θ/2]. As in the previous
section, we consider two copies of the cumulative wave, but in this
case with one copy shifted not only in the z, but also in the x direc-
tion. The intensity at a pixel on the sensor is given by integrating
the intensities from Equation (7) for all independent waves,

I(x) =

∫ Θ/2

−Θ/2

〈
|uθ(x, z, t) + uθ(x+ ξ, z + τ, t)|2

〉
t

dθ. (14)

This implies that the correlation is,

corr(x, ξ, τ)=

∫ Θ/2

−Θ/2

〈uθ(x, z, t)∗ ·uθ(x+ξ, z+τ, t)〉t dθ, (15)

and similarly for the field intensity Io(x) and the interference con-
trast I(x)− 2Io(x). To evaluate how fast the interference contrast
decays as a function of spatial shift , we use the following claim.

Claim 2. For an area light source with an angular range θ ∈
[−Θ/2,Θ/2], the correlation decays as

corr(x, ξ, τ) ≈W∆c(ξ)e
ik̄(τ)G

∆−1
k

(τ), (16)

where

W∆c(ξ) = sinc

(
ξ

∆c

)
, ∆c =

λ̄

2Θ
. (17)

We see that, for area sources, the interference contrast decays very
fast as the spatial shift ξ increases, and no significant contrast is
measured for values of ξ larger than the quantity ∆c of Equa-
tion (17). Analogously to the previous section, we define ∆c as the
spatial coherence length. The spatial coherence length is inversely
proportional to the angular extent of the source. The wider the
source, the smaller the spatial coherence length, and therefore the
higher the resolution at which we can discriminate between paths
with different points of origin on the light source.

Proof of Claim 2. A plane wave propagating in angle θ is

uθ(x, z, t) =

∫
k

ak,θ · exp (−ik(sin(θ)x+ cos(θ)z − ct)) dk,

(18)
where we assumed η = 1 for simplicity and without loss of gener-
ality. For small θ, sin(θ) ≈ θ and cos(θ) ≈ 1, therefore

uθ(x, z, t) =

∫
ak,θ · exp (−ik(θx+ z − ct)) dk. (19)

The time delay between the shifted wave uθ(x + ξ, z + τ, t) and
the original one uθ(x, z, t) is the projection of the shift (ξ, τ) on
the propagation direction (sin(θ), cos(θ)) ≈ (θ, 1),

uθ(x+ ξ, z + τ, t) = uθ(x, z, t− (θξ + τ)/c). (20)

A small adaptation of Claim 1 shows that, for every θ,

corrθ(x, ξ, τ) = eik̄(θξ+τ)e−
1
2

(∆k(θξ+τ))2 , (21)

where the shift between the waves is now θξ + τ instead of τ as
in Claim 1. If this shift is large, the interference contrast for ev-
ery θ decays as a Gaussian with width equal to the temporal co-
herence length 1/∆k. However, even if the temporal coherence
length is large relative to the spatial shift, so that in Equation (21)
e−

1
2

(∆k(θξ+τ))2 ≈ 1, the observable interference still decays if ξ
is larger than ∆c. To see this, we compute the total interference
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contrast by integrating Equation (21) over angles in the source,

corr(x, ξ, τ) =

∫
θ

eik̄(θξ+τ)e−
1
2

(∆k(θξ+τ))2 dθ. (22)

Though we can compute Equation (22), to obtain a simpler expres-
sion we approximate the Gaussian term by its central value,

corr(x, ξ, τ) ≈ e−
1
2

(∆kτ)2
∫
θ

eik̄(θξ+τ) dθ

= W∆c(ξ)e
ik̄(τ)G

∆−1
k

(τ). (23)

The last equality follows from the fact that the term eik̄θξ is a sinu-
soid varying with θ, whose integral is a sinc. Therefore, for large
ξ, integrating over θ can completely eliminate the correlation. �

3.3 Coherence Properties of Different Sources

There are many types of light sources with different coherence
properties. As we will see in the next section (e.g. Figure 5), these
properties determine the type of transport decomposition that our
interferometer provides. We discuss various sources here, limiting
our attention to those in the visible spectrum.

Laser sources are at one extreme end of coherence. These are high-
power sources that can typically be modelled as ideal points (zero
area), while also having very narrow, effectively monochromatic,
spectral widths. As a result, their temporal and spatial coherence
lengths can reach a few meters, implying poor spatial and path-
length resolution. For this reason, lasers are not appropriate for
micron-scale light transport decompositions, but can be used when
micron-scale resolution is not necessary [Abramson 1983].

At the other extreme are light-emitting diode (LED) sources. These
can be either “colored”, with a spectral bandwidth of a few tens
of nanometers around their central wavelength, or very broadband,
covering the entire visible spectrum. Necause of their lower power
density, LED sources have larger emitting areas, with widths rang-
ing from several millimeters to a few centimeters. As a result, they
have micron-scale temporal and spatial coherence lengths. Their
exact values can be controlled by modulating the source output with
an optical color filter, and placing an aperture between the source
and the collimating lens: A narrower spectral filter means longer
temporal coherence, and a smaller aperture means larger spatial co-
herence length. The increase in coherence comes at the expense of
lower light output, and therefore longer exposure time.

Between the two extremes, there are two source categories. The
first category includes superluminescent diode (SLD) sources, and
supercontinuum laser sources. Like standard lasers, these are high-
power sources that have infinitesimal effective area, but at the same
time, they are polychromatic like standard LEDs. SLDs have band-
widths comparable to colored LEDs, and supercontinuum lasers
span the entire visible spectrum. Therefore, these sources combine
the meter-size spatial coherence lengths of lasers with the micron-
scale temporal coherence lengths of LEDs.

Finally, the opposite combination corresponds to a monochromatic
area source. Such a source can be created using a spatially dense
bundle of multiple pinhole laser sources, or using specially manu-
factured, large-area laser semiconductors (diode bars and stacks).

Practical coherence values. To illustrate how these calculations
translate into practice, consider the coherence lengths of an LED
source coupled with a color filter and aperture.

With respect to temporal coherence length, note that broadband
sources and color filters are often described by the width ∆λ of
the variation around the central wavelength λ̄, rather than the vari-
ation ∆k around the wave number. Using simple Taylor expansion,
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Figure 4: Measuring the optical coherence length. The graph to
the left shows the intensity measured by the camera in Figure 2 for
different values of pathlength difference τ = |ds − dr|, and the
graph to the right shows a close-up over a range of 2µm. When
the pathlength difference is zero, maximal constructive interference
exists. A pathlength shift of λ/2 results in destructive interference
(zero intensity). As the pathlength difference increases, correlation
between the waves is reduced and the fringe contrast decays, be-
coming almost zero once τ exceeds the temporal coherence length.
The differently colored plots show measurements for different spec-
tral bandwidths. Using a white light source with color filters of
spectral bandwidth of 3, 10 and 25 nm produces temporal coher-
ence lengths of 50, 25, and 10µm, respectively. The measurements
for this figure were taken at a resolution of 10 nm.

we can relate this to the temporal coherence length as

Lc = 1/∆k ≈
λ̄2

2π∆λ
. (24)

Imagine a broadband LED, emitting in the entire visible range
[400, 700] nm. Ignoring any ultraviolet and infrared energy, we
can set λ̄ = 550 nm and ∆λ = 150 nm, resulting in coherence
length Lc ≈ 0.3µm. In practice, this very fine resolution comes
at the cost of very reduced interference contrast, due to chromatic
aberration of optics. Alternatively, we can couple such a source
with a color filter, or directly use a colored LED source. These al-
ternatives give spectral widths in the range of 1 − 50 nm, which
correspond to temporal coherence lengths of a few microns. Ad-
ditionally, as mentioned in Section 2, these narrower bands allow
capturing measurements at multiple spectral channels. In Figure 4,
we use the Michelson interferometer of Figure 2 to measure the
temporal coherence lengths of such a combination, using three dif-
ferent color filters. Using a filter of bandwidth 25 nm, we measure
a temporal coherence length of about 10µm. This is the resolution
we use in most of our experiments in the paper.

In terms of spatial coherence length, as indicated by Equation (17),
the values we can achieve in practice are a function of the angular
extent of the source. For visible wavelengths, assuming that we
can collimate the source output to have an angular range of 4◦, we
have ∆c ≈ 8µm. With an angular extent of 1◦ the coherence
length increases to ∆c ≈ 32µm. In a natural environment where
illumination arrives from multiple directions over the hemisphere,
coherence length can approach the wavelength of light.

4 Light Path Decomposition

Equipped with analytical representations of temporal and spatial
coherence, we are ready to introduce a mathematical model of in-
terferometric decomposition of light transport. The core of this sec-
tion is Equation (34), which relates discrete interference measure-
ments to an underlying pathlength-resolved transport function—a
continuous version of the pathlength-resolved transport matrix of
Equation (3). Using this model, we re-interpret the output of time-
domain, full-field OCT as decomposition by pathlength τ (transient
imaging), and we describe combinations of sources and reference
mirrors that provide other types of decompositions.
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Throughout this section, we assume that we image with a camera
focused at depth zo, as shown in Figure 3. As we restrict the dis-
cussion to points on the z = zo plane, from this point forward we
simplify notation by omitting the z coordinate of fields. We denote
by uin,θ(x, t) the incoming field arriving at both the reference and
target arms at time t after being emitted from the source. This is
a superposition of monochromatic waves, as in Equation (18). We
denote by us,θ(x, t) the field scattered by the scene at space point
(x, zo) and time t. Similarly, we denote by ur,θ,τ (x, t) the refer-
ence field at point (x, zo) when the reference mirror is positioned
at depth zo + τ/2. We begin by deriving expressions that relate the
reference and scattered fields to the input field.

Reference field. The reference field ur,θ,τ relates to uin,θ through
a spatial transformation f(x) and a temporal shift,

ur,θ,τ (x, t) = uin,θ(f(x), t− τ/c). (25)

In the standard Michelson interferometer of Figure 2, we have sim-
ply f(x) = x. We can produce more general transformations f(x)
with other mirror configurations (Figure 6). The form of f(x) will
determine the non-zero entries of the matrix M from Equation (3).

Scattered field. The scattered field us,θ relates to the input field
through a more general transformation, which is a function of the
scene’s geometric, refractive, and material properties. To derive
its form, we introduce some additional notation. We denote by
{oγ}γ∈A(x1,x2) the set of all possible paths in the scene from point
(x1, zo) to point (x2, zo) (see Figure 3 for the case x1 = x2), by
`(oγ) the optical length of each path, and by α(oγ) the energy loss
along the path—this loss is a function of the propagation distance
and volumetric absorption along the path. Depending on the scene,
such paths can be of many forms: direct paths traveling from the
source to the object and then the camera, multiple reflections, mul-
tiple scattering, and so on. In the simple case that the scene is a
perfect planar mirror, there are paths with non-zero absorption only
if the start and end point are the same, x1 = x2, and for every
x1 only a single such path exists—the direct path from (x1, zo) to
(x1, zo). For a path in air, where the refractive index η ≈ 1, `(oγ)
is equal to the geometric path length; in media with larger refractive
indices, the path length also folds in the optical path delay. Finally,
we denote by T (x1, x2, τ) the complex scalar resulting from the
integration of all paths from x1 to x2 with optical length τ ,

T (x1, x2, τ) =

∫
{oγ |`(oγ)=τ}γ∈A(x1,x2)

α(oγ). (26)

We call T (x1, x2, τ) the pathlength-resolved light transport func-
tion. When the scene is a planar mirror, T (x1, x2, τ) = δ(x1 −
x2, τ − ds), where ds is the depth of the scene mirror. By def-
inition, we observe that the function T (x1, x2, τ) is the complex-
valued continuous version of the pathlength-resolved light transport
matrix, Tτ , introduced in Section 1. In parts of the following dis-
cussion, we will be employing the light transport matrix discretiza-
tion for visualization and intuition, with the understanding that we
continue to use the continuous version T (x1, x2, τ).

We can now use the above functions to derive the scattered field
us,θ(x, zo). This is the superposition of contributions along all pos-
sible paths, with a time delay proportional to the path length,

us,θ(x, t) =

∫
ξ

∫
{oγ}γ∈A(x+ξ,x)

α(oγ)uin,θ

(
x+ ξ, t− `(oγ)

c

)
dξ

=

∫
ξ

∫
ς

T (x+ ξ, x, ς)uin,θ

(
x+ ξ, t− ς

c

)
dς dξ. (27)

The above equation relates the field to the function T (x1, x2, τ)
for the scene. The term uin,θ

(
x+ ξ, t− ς

c

)
is complex-valued and

includes the phase difference between the integrated components,
due to the different lengths of paths in each component.

Interference of reference and scattered fields. Having derived
expressions for the reference and scattered fields, we now compute
the interference contrast that can be measured by a camera. Ig-
noring for now diffraction blur, a camera focused at depth zo will
measure the superposition of the two fields,

Ii,τ (x) =

∫
θ

〈
|ur,θ,τ (x, t) + us,θ(x, t)|2

〉
t

dθ (28)

= Is(x) + Ir,τ (x)

+ 2 Re

{∫
θ

〈ur,θ,τ (x, t)∗ · us,θ(x, t)〉t dθ

}
, (29)

where by Is(x), Ir,τ (x) we denote the intensities of the scattered
and reference fields, respectively,

Is(x)=

∫
θ

〈
|us,θ(x, t)|2

〉
t

dθ, Ir,τ (x)=

∫
θ

〈
|ur,θ,τ (x, t)|2

〉
t

dθ.

(30)
The intensity components Is and Ir,τ correspond to the images the
camera would measure if we blocked the mirror or scene arms of the
setup, respectively, and measured the other. By subtracting these
components, we remain with the interference contrast, equal to the
real part of the correlation of the reference and scattered fields,

Cτ (x) =

∫
θ

〈ur,θ,τ (x, t)∗ · us,θ(x, t)〉t dθ. (31)

Cτ (x) is a correlation signal, analogous to corr(x, ξ, τ) in Equa-
tion (15). We denote it by a distinct symbol because of its impor-
tance in our application. Using the coherence properties for corre-
lation signals from Section 3, we can prove the following claim.

Claim 3. The correlation of the reference and scattered fields is

Cτ (x)∝
∫
ξ

W∆c(ξ)∫
ς

T (f(x) + ξ, x, ς)eik̄(ς−τ)G
∆−1
k

(ς − τ) dς dξ. (32)

Proof. We denote ξ = x+ ζ − f(x), implying x+ ζ = f(x) + ξ.
Substituting Equations (25) and (27) in Equation (31), we obtain

Cτ (x) =

∫
ξ

∫
ζ

T (f(x)+ξ, x, ς)∫
θ

〈
uin,θ

(
f(x), t− τ

c

)∗
uin,θ

(
f(x)+ξ, t− ς

c

)〉
t

dθ dζ dξ (33)

Using Claim 2, we get Equation (32). �

The above claim shows that the correlation Cτ (x) is equal to the
pathlength-resolved light transport function T (f(x), x, τ) from en-
trance point (f(x), zo) to exit point (x, zo), blurred in space with
a sinc of width proportional to the spatial coherence length, and
blurred in the pathlength dimension with a Gaussian of width pro-
portional to the temporal coherence length of the source. By record-
ing the intensity Ii,τ (x) of Equation (28) and subtracting the indi-
vidual intensities of the source and reference fields, we have

Tm(f(x), x, τ) , |Ii,τ (x)− (Is(x) + Ir,τ (x))|2 (34)

= |2 Re(Cτ (x))|2

=
∣∣∣2 Re

(
T (f(x), x, τ) ∗W∆c ∗ (eik̄τG

∆−1
k

(τ))
)∣∣∣2 .

This equation is our main result. It shows that using interference,
we can measure blurred samples of the pathlength-resolved light
transport function. The spatial resolution is controlled by the size
of the spatial blur kernel, which is in turn controlled by the illu-
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(a) pathlength decomposition

(b) spatial probing

(c) pathlength decomposition + spatial probing
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Figure 5: By equipping the Michelson interferometer with sources
having different coherence properties, we can capture different light
path decompositions. (a) Pathlength decomposition separates all
paths in a scene (M = 1), regardless of their endpoint locations,
in terms of their optical length τ . It separates direct paths (blue),
reflections (purple), retroreflections (orange), and all scattering
(greens). (b) Spatial probing separates paths with certain start
point locations while ignoring their lengths (by effectively measur-
ing summations over pathlength). For a diagonal M, it separates
direct, retroreflection, and backscattering (dark green) paths. (c)
Finally, it is also possible to combine the previous two cases and
separate paths in terms of both pathlength and endpoint locations.

mination angle of the light source. Similarly, the pathlength reso-
lution is controlled by the size of the blur kernel in the pathlength
dimension, which in turn is controlled by the spectral bandwidth
of the light source. The exact correspondence (f(x), x) between
entrance and exit points where we sample the light transport func-
tion depends on the transformation implemented at the reference
arm of the setup. Finally, the pathlength where we sample the light
transport function depends on the depth of the reference arm.

4.1 Decomposition Types

Based on our model in Equation (34), the interferometer of Figure 2
can be equipped with various sources and mirror configurations to
produce different types of light transport decompositions. The fol-
lowing discussion is summarized in Figures 5 and 6.

Pathlength decomposition. The first case is equivalent to transient
imaging, and corresponds to setting M = 1 and w(τ) = δ(τ − τo)
in Equation (3). For the former, we require a source with very large,
essentially infinite, spatial coherence length, meaning that the spa-
tial blur kernel W∆c in Equation (34) is equal to 1 everywhere. For
the latter, we need a source with a very short temporal coherence
length, making the pathlength blur kernel G

∆−1
k

in Equation (34)
very narrow. As discussed in Section 3.3, this is achieved using an
SLD or a supercontinuum laser. Capturing an entire transient se-
quence corresponds to sweeping over τo values, which can be done
by densely scanning the reference arm to different positions. This
hardware combination and capture procedure is exactly equivalent
to conventional full-field, time-domain OCT.

Spatial probing. Referring again to Equation (3), another form
of decomposition corresponds to setting, w(τ) = 1 everywhere,
and using a spatial probing pattern M with non-zero entries only
for the paths we want to preserve. This requires a source with a
near-infinite temporal coherence length and a very small spatial co-
herence length. From Section 3.3, such a source can be produced
using a laser bundle. Additionally, we require a reference mirror
configuration whose shape induces the spatial transformation f(x)

(a) diagonal probing

mirror diffusermirror diffuser

(b) anti-diagonal probing

(c) sub-anti-diagonal probing (d) other probing patterns
Figure 6: Reference mirror configurations in a Michelson interfer-
ometer induce different spatial probing patterns. Assuming co-axial
source and camera: (a) A planar mirror probes the main diagonal
of the light transport matrix, corresponding to direct, retroreflec-
tion, and backscattering paths. (b) A right-angle mirror pair probes
the anti-diagonal, which includes 2n-bounce reflection paths. (c)
Offsetting a right-angle pair allows probing away from the anti-
diagonal. (d) Different combinations of these basic configurations
probe blocks of the light transport matrix in different ways.

corresponding to the desired pattern M. Using a planar mirror as in
the standard Michelson interferometer corresponds to a matrix M
that is non-zero only in its main diagonal. We discuss alternatives
later in the section. Due to the infinite temporal coherence length,
this case does not require a scan of the reference arm. We mention
spatial probing here for completeness, but note that, for this type of
decomposition, interferometry does not offer any advantages com-
pared to the other, easier to implement and use, techniques dis-
cussed in Section 2. For this reason, we did not implement this
case, and only used spatial probing combined with pathlength de-
composition, as discussed in the next paragraph.

Pathlength decomposition and spatial probing. The last case de-
composes light transport simultaneously in terms of pathlength and
spatial correspondences. As suggested by the previous two cases,
we can do this using a source with temporal and spatial coher-
ence lengths that are both small. An LED source is the appropriate
choice as described in Section 3.3. As is needed for pure pathlength
decomposition, capture requires a dense scan of the reference arm
to many different positions.

Creating probing patterns. In the last two decomposition types,
replacing the planar mirror Mr in the reference arm of the Michel-
son interferometer with different mirror shapes induces different
correspondences f(x), that can be used to probe off-diagonal el-
ements of the light transport matrix. For instance, the right-angle
pair of mirrors in Figure 6(b) induces a vertical flip, or f(x) = −x.
This corresponds to measuring the anti-diagonal of the light trans-
port matrix, which includes two-bounce paths as shown in Fig-
ure 6(b). Shifting such a pair of mirrors vertically in the figure
measures arbitrary anti-diagonals, as in Figure 6(c); and combina-
tions of parallel mirrors and orthogonal mirror pairs sample differ-
ent blocks of the light transport matrix in different ways, as shown
in Figure 6(d). Note that the probing pattern M produced by these
mirror configurations will be different if we change our setup so
that the camera and source are no longer co-axial.
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5 Pipeline and Design Considerations
Having presented our setup and methodology, we now discuss the
computational post-processing and other practical considerations
for optimizing the performance of our setup for graphics applica-
tions. Throughout this section, we consider a toy scene consisting
of a tilted diffuse plane, as shown in Figure 7(a).

Capture and computational post-processing. Measuring the
scene and mirror images Is and Ir,τ separately is impractical, as
it doubles acquisition time. In practice, since the reference arm
contains a mirror configuration, the intensity Ir,τ does not vary
much with τ and can be estimated by smoothing the τ dimension.
For this reason, we perform a single scan of the scene, capturing a
set of frames corresponding to Ii,τ (x) for various values of τ , as
shown in Figure 7(a)-(b). Scanning a volume of 1 cm using this
process typically requires capturing 10000 images (one image per
micron-translation of the reference arm), a process which can take
up to several hours for scenes requiring long exposure times. As we
mention in Section 6, for scenes that require multiple spectral chan-
nels or high-dynamic range, we need to repeat the scanning process
several times, resulting in hundreds of thousands of images.

Following the capture section, in post-processing we approximate
the interference-free component as

Îs(x) + Îr(x) ≈ medianτ (Ii,τ (x)). (35)

Furthermore, in real scenes the interference signal Tm of Equa-
tion 34 involves a high-variation pseudo-random speckle noise. To
eliminate these speckle artifacts, we blur our measurements over a
small spatial window with a filter g(x). Our final estimate of the
optical pathlength decomposition function is, then, computed as

T̂m(f(x), x, τ) = Tm(f(x), x, τ) ∗ g(x)

= |Ii,τ (x)− Îs(x)− Îr(x)|2 ∗ g(x). (36)

This blurring is one of the factors that result in a reduction in the
spatial resolution of our measurements. We discuss speckle noise in
more detail in the supplementary material. In the remaining of this
section, we discuss other factors, as well as practices to maximize
the signal-to-noise ratio of the measurements (36).

Contrast. Assume we want to capture the pathlength component
which corresponds to optical length τ and that the reference mirror
is positioned at the corresponding depth. We will define the contrast
as the spatially averaged magnitude of the interference (correlation)
component, over the intensity components,

Contrast =

√
Ex [Tm(f(x), x, τ)]

Ex[Is(x) + Ir,τ (x)]
. (37)

To avoid saturation, we set the exposure time so that the averaged
intensities without interference fall in the middle of the sensor’s
dynamic range, Ex[Is(x) + Ir,τ (x)] ≈ 0.5. Then, Equation (37) is
simply the averaged magnitude of the interference contrast.

A short calculation shows that the contrast in Equation (37) is max-
imized when the energy of the reference field Ir,τ (x) is equal to
the energy of the scattered field at the optical length τ of interest
Tm(f(x), x, τ). Because in diffuse scenes only a small portion of
the energy in the target arm returns to the camera, to achieve the
above ratio, we need to attenuate the very high amplitude of the
reference arm. In most scenes, the intensity at a single point is the
result of contributions from multiple paths, making it impossible to
a-priori match the energy of the pathlength τ component only. In-
stead, we attenuate the reference arm so that its intensity matches
the total intensity. As discussed in Section 6, we do this using either
cross-polarization, or neutral density filters.

Optics blur. The ideal analysis of the Section 4 does not take into
account blur introduced by the optics of the interferometry setup,

captured frames

τN

τN. . .τ1

tilted diffuse
plane

τ1 τN. . . . .
.

τ1

processed frames
Figure 7: Capture and computational pipeline. We consider a toy
scene consisting of a diffuse plane, tilted relative to the optical axis
of the camera and illumination, as shown in the upper left. By
translating the reference mirror to different positions, we capture
a sequence of frames corresponding to the intensity Ii,τ (x) mea-
sured for different values τ . By processing the frames using Equa-
tion (36), we separate the interference component T̂m(f(x), x, τ),
resulting in the images at the bottom. As the target plane is tilted,
different points have different depths and therefore interfere with
the target arm at different pathlength values τ , corresponding to
the scan lines shown in the processed frames.

including diffraction and sensor blur. These blur processes can re-
duce interference contrast, unless the various aperture and magni-
fication parameters are chosen appropriately. We discuss these ef-
fects below, and in greater detail in the supplementary material.

We consider as before a camera focused at zo, as shown in Figure 3.
From diffraction theory [Goodman 1968], we have that instead of
the field uθ(x, t) arriving at point (x, zo), the camera measures the
field blurred by the camera diffraction blur kernel, W∆Φ ∗uθ(x, t),
where the diffraction blur width ∆Φ = λ̄/(2Φ) is inversely propor-
tional to the acceptance angle Φ of the camera.

The intensity measured by the camera is the intensity of the blurred
field, averaged over the area of a pixel on the sensor,

I(x) = Π∆x ∗
∫ Θ/2

−Θ/2

〈
|W∆Φ ∗ uθ(x, t)|

2〉
t

dθ, (38)

where Π∆x is the pixel-sized rectangular function.

As a result of the above two processes, we prove in the supplemen-
tary material that measurements from Equation (34) take the form,

Tm(f(x), x, τ) = |2 Re (β ∗ Cτ (x))|2

=
∣∣∣2 Re

(
β ∗W∆c ∗ T (f(x), x, τ) ∗ (eik̄τG

∆−1
k

(τ))
)∣∣∣2 ,

(39)

where β = Π∆x ∗W∆Φ .

It is important to observe that the additional blur β acts on the com-
plex valued correlation component, rather than on powers (inten-
sities). Therefore, if the correlation signal Cτ (x) contains spatial
features whose frequency is higher than the widths ∆x,∆Φ of the
blur kernels, the averaged power of measurement signal is reduced.
From Equation 32, we know that the signal Cτ (x) has limited spa-
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Figure 8: Optimizing the Michelson interferometer of Figure 2. The schematic to the left describes our implementation. We consider the
effect of the following imaging parameters: source aperture area As, camera aperture area Ac, and pixel pitch p. The optimized settings
correspond to camera F-number of f/32, source aperture so that the source’s angular extent is approximately half that of the camera, and
pixel pitch of 4µm. Different configurations are produced by modifying only one parameter. For each configuration, the middle graph shows
the measured contrast for the tilted diffuse plane scene of Figure 7; and the right graph compares contrast and total exposure time.

tial resolution ∆c, as a result of the limited spatial coherence of the
light source. Therefore, to achieve good contrast, we need to select
the imaging parameters such that the optics blur remains below the
signal resolution, that is, ∆x < ∆c and ∆Φ < ∆c.

We note that requesting ∆Φ < ∆c is equivalent to requesting that
the angular extent of the source is smaller than the acceptance angle
of the camera, Θ < Φ. In general, using a wide source is desirable,
as it increases the overall power of the illumination and therefore
reduces exposure time. However, increasing the source angular ex-
tent without adjusting the imaging parameters accordingly will also
reduce the contrast of the correlation signal. To relate these directly
to imaging parameters, we denote by Ψ the numerical aperture of
the camera lens. A short calculation shows that a camera imaging at
magnification m accepts light up to a maximal angle Φ = Ψ

1−1/m
.

In Figure 8, we quantify the above observations by measuring the
detection contrast for the tilted diffuse plane scene of Figure 7 un-
der different imaging configurations. We vary the size of the source
and camera aperture, and the size of the camera pixel—which is
analogous to changing the camera magnification. We observe that
setting imaging parameters sub-optimally can result in loss of more
than half the detection contrast. On the other hand, optimizing de-
tection contrast comes at the cost of increased exposure time.

6 Implementation and Experiments

Figure 8 shows a schematic of our optical setup. We select sources
and mirrors corresponding to configurations (a) and (c) of Figure 5,
and (a) and (b) of Figure 6, respectively. The exact configuration
depends on the application, as described below.

Our schematic has two additions compared to Figure 2. First, we
modulate the output of the source source using color filters of band-
width 25 nm (e), producing a temporal coherence length of about
10µm (Figure 4). To enable RGB imaging, we use a filter wheel
to automatically change between filters centered at different wave-
lengths: 625 nm (red), 525 nm (green), and 450 nm (blue).

Additionally, we use three polarizers: at the source (d), camera (j),
and reference arm (g). The polarizers on the source and camera are
rotated to be either parallel or crossed with each other, depending
on which polarization component of the scene’s transport is to be
measured. The polarizer on the reference arm (g) is rotated relative
to the other two in order to attenuate the reference beam by different
amounts. This enables HDR imaging: we scan exposure brackets
where, for each setting of the camera’s exposure time, the reference
polarizer (g) is adjusted so that the reference beam’s intensity is
at roughly one-quarter of the sensor’s dynamic range (for a total
intensity at roughly half the dynamic range when imaged together
with properly exposed parts of the target scene). When we need

to measure both polarization components, we remove polarizers (d)
and (j), and replace (g) with a sequence of neutral density filters.

We discuss our implementation in detail in the supplementary ma-
terial. In the rest of this section, we use this assembly to analyze
transport in various scenes and for various applications. We first
discuss experiments using an LED source (Figure 5(c)).

Depth scanning. Following Section 4.1, we use an LED source and
a planar reference mirror to measure the pathlength decomposition
of the diagonal component Tm(x, x, τ). As our camera and source
are co-axial, we then obtain the depth D(x) at pixel x as

D(x) = min {τ : Tm(x, x, τ) > 0} . (40)

Figure 9 shows scans of a few different objects. Each scan mea-
sures a volume of 15 mm at a step size of 1µm, and requires
roughly eight hours of capture time. The effective depth resolution
is 10µm. We can measure depth in a number of challenging situ-
ations, such as when materials exhibit substantial scattering (soap),
semi-transparency (gummy bear), and strong caustics and specular
or diffuse interreflections (cup and pasta). The very fine pathlength
resolution of our setup translates directly into sharp depth resolu-
tion, which allows capturing details such as the hair texture on the
coin and the fine texture on the gnocchi surface.

Figure 10 shows depth maps obtained for two more scenes. The
stage step size and effective resolution are the same as before, but
the volume and capture time increase to roughly 25 mm and 12
hours, respectively, to capture the longer reflection paths. The first
scene includes sharp specular interreflections, with a single chess
piece between an angled diffuse wall (right) and a mirror (left). In
the acquired depth map, the mirror reflections are interpreted as
real objects at a greater depth. Despite the indirect reflection by the
mirror, the depth map of the chess piece is accurately recovered.
The second scene shows a translucent gummy bear between two
diffuse walls. Compared to the rightmost column of Figure 9, where
the gummy bear is surrounded by air, here the combination of a
diffuse wall behind a near-transparent gummy bear induces many
distinct paths of similar intensity at each camera pixel. Despite this
conflation, the scene geometry is still recovered accurately.

Separation of direct and global components. We can use the
same source and mirror combination as before to also do direct-
global separation. Since the source and camera are coaxial, the
direct component at each pixel is the energy of the shortest path
that contributes to the diagonal of the light transport matrix. Thus,

Idirect(x) = Tm(x, x,D(x)), (41)

where D(x) is the depth from Equation (40). The global compo-
nent sums the contributions from all other paths and, given an image
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Figure 9: Scanning depth. For each scene from top to bottom: an unprocessed HDR frame; scanned depth, visualized using pseudo-color and
a periodic change in luminance for a contouring effect; and rendering of scanned 3D mesh. All scans are at a depth/pathlength resolution of
10µm. Scenes from left to right: US quarter, gnocchi, soap carving, plastic toy cup, dry pasta, and gummy bear.

Figure 10: Depth scans of complex scenes. From left to right: an
unprocessed HDR frame; scanned depth, visualized as in Figure 9;
and rendering of 3D mesh. Top row: Chess knight between a diffuse
wall to the right and a mirror to the left. The mirror-reflection is
interpreted as a real object at a greater depth. Bottom row: Gummy
bear between two diffuse walls. The scene geometry is recovered
accurately, despite the conflation of paths from the diffuse walls
behind the near-transparent gummy bear.

I(x) captured using a conventional camera, can be obtained as

Iglobal(x) = I(x)− Tm(x, x,D(x)). (42)

We note that spatial probing alone is not sufficient for computing
the exact direct component, and it is necessary to also do pathlength
decomposition. With reference to Figure 1, spatial probing (diag-
onal of the light transport matrix) captures the various blue paths,
which include direct paths and retroreflections, but also backscat-
tering. Using pathlength decomposition to select only the shortest
path additionally removes the backscattering contributions.

Figure 11 shows such a decomposition for a close-up of a straw-
berry. We produced this separation from 12 scans of the strawberry
(4 exposures× 3 spectral channels). Each scan was performed at a
step size of 10µm, meaning that we slightly undersampled in the
pathlength domain relative to the source’s pathlength resolution of
10µm. Additionally, we used 8× 8 pixel binning on the camera to
speed-up frame streaming, and large source and camera apertures
to decrease exposure time. Even though these imaging settings are

direct component global componentHDR frame
Figure 11: Direct-global separation for a close-up of a strawberry.

suboptimal (see discussion of Figure 8), they were necessary to re-
duce the total scanning time to a little below two hours, thereby
accommodating the limited shelf life of the strawberry.

We observe that the direct component is essentially achromatic and
captures features characteristic of direct illumination, such as the
specular highlights and high-frequency surface structure. The in-
direct component in this image is primarily volumetric scattering,
and we see that it accounts for the red color of the strawberry and a
large part of the coloration of the strawberry seeds.

Scattering. As discussed in Section 4.1, we can also obtain a de-
composition of scattering paths that begin and end at the same lo-
cations on the surface of a scattering volume. To demonstrate this,
Figure 12 shows the results from scanning a scene with materials of
different scattering properties, such as a metal, a diffused wall and a
highly-scattering zirconia coating. Figure 12(c) shows a processed
frame from the scan, where the intensity tails at the zirconia coat-
ing and diffuse wall regions are produced by the strong backscat-
tering of those materials. In Figure 12(d), we see the pathlength
slice Tm((x, yo), (x, yo), τ). (We use pairs (x, y) to indicate the
2D pixel coordinates). At pixels corresponding to zirconia coat-
ing and the diffuse wall, the interference remains noticeable over a
long range of pathlengths. Conversely, we see negligible scattering
in the uncoated metal pixels.

In Figure 13(a), we show scattering profiles
Tm((xo, yo), (xo, yo), τ), as a function of pathlength. These
were measured by scanning uniform slabs of various translucent
materials: whole milk, milk soap, wax, and the zirconia coating
mentioned previously. For materials that are optically dense and
strongly forward scattering, such as whole milk, the measured
intensity drops very sharply. On the other hand, for the diffuse
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(a) scene photograph (b) HDR frame (c) processed frame

(d) pixel-pathlength slice
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Figure 12: Scanning a scene with materials of different scattering
properties using an LED source. (a) A photograph of the scene: A
turbine blade with a highly diffusive zirconia coating is placed in
front of a spectralon slab. (b) An unprocessed frame. (c) A pro-
cessed frame, showing as an image the value of the measurement
Tm((x, y), (x, y), τo) for some value of τo and all pixels (x, y).
(d) The function Tm((x, yo), (x, yo), τ) for pixels (x, yo) on the
horizontal crosssection shown in (b), and for all values τ .
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Figure 13: Pathlength decomposition of scattering paths starting
and ending at a single point on the surface of a scattering volume.
All measurements use an LED source. Left: Measured scattering
profiles Tm((xo, yo), (xo, yo), τ) at a single pixel (xo, yo) as a
function of τ , for various materials. Right: Measured profiles for
the parallel and cross-polarized scattering component of zirconia.

zirconia coating, we can measure non-zero interference for
pathlengths as long as 3 mm inside the medium.

In Figure 13(b), we additionally show the scattering profiles mea-
sured in the zirconia material for different polarization channels.
Specifically, we measure the scattering profiles when the polariz-
ers (d) and (j) in Figure 8 are rotated so that their axes are parallel
or orthogonal (“crossed”). We observe at short pathlengths, the
component corresponding to parallel polarization is much stronger
than that corresponding to crossed polarization. However, as the
pathlength increases, the parallel- and cross-polarized components
become equal. This is in agreement with the well-known obser-
vation that low-order scattering preserves polarization, but high-
order scattering becomes randomly polarized. For reference, we
also plot the scattering profile for this material from Figure 13(a),
where there is no decomposition of polarization.

Dispersion and birefringence. As discussed in Section 4, inter-
ferometry produces light path decompositions in terms of optical
instead of geometric pathlength. Two light paths that have the same
geometric length can have different optical length if they travel
through media with different refractive indices. This could be either
because they travel through different optical materials, or because
of phenomena such as dispersion and birefringence, where the re-

(a) schematic

(b) scene photograph pathlength

(c) unprocessed frames

gl
as

s
ai

r
pi

xe
l

(d) pixel-pathlength slice

. . .

w
at

er
+

gl
as

s

Figure 14: Visualizing dispersion in the pathlength domain. (a)
A schematic of the scene, consisting of a glass container partially
filled with water and placed in front of a mirror. As light travels
through the glass and water, different wavelengths are delayed by
different amounts due to dispersion. (b) A photograph of the scene
we scan with an LED source. We consider the close-up shown in
the box. (c) Frames acquired at a wavelength of 525 nm, and at
three different pathlengths. Spatial fringes indicates interference of
paths that travel through, from left to right, air only, air and glass,
and air, glass, and water. (d) Visualization of the interference mea-
sured across a vertical cross-section of the frames, as a function of
optical pathlength and for three different wavelengths. We observe
that paths travelling through glass or through both glass and wa-
ter are delayed more compared to paths travelling through air only.
Additionally, the delay is a function of wavelength, resulting in the
appearance of a “rainbow” as a function of optical pathlength.

fractive index of a material changes as a function of the wavelength
and polarization of light. We visualize these three phenomena using
our setup with an LED source and a planar reference mirror.

In Figure 14, we scan a scene consisting of a glass container par-
tially filled with water, placed in front of a mirror. Paths from the
light source to the mirror and back to the camera all have the same
geometric length. However, they have different optical lengths, de-
pending on whether they travel through only air, through the empty
part of the glass container, or through the part filled with water. Ad-
ditionally, optical lengths vary as a function of wavelength, because
of the dispersion of glass and water. This produces a “rainbow”
when we visualize the measurements Tm((xo, y), (xo, y), τ) as a
function of pathlength, even though such a rainbow is not visible
in a static image. The path delay between different spectral bands
increases for paths going through both water and glass (roughly
20µm), compared to paths going through glass only (roughly
10µm), due to the additional dispersion of water.

In Figure 15, we visualize birefringence by scanning a scene con-
sisting of a plastic protractor placed in front of a mirror. The me-
chanical stresses in different parts of the plastic material result in
the refractive index of the material varying spatially as a func-
tion of polarization and wavelength, a behavior known as photoe-
lasticity. This creates familiar color patterns when the protractor
is viewed under standard polarized light without any interference
(Figure 15(b)). The refractive index variations additionally mean
that paths travelling through the protractor to the mirror and back to
the camera will have different spatially varying pathlength. This is
shown in Figure 15(d), where we scanned and visualized the con-
tributions from different pathlengths at different parts of the pro-
tractor. The spatial variations of the measured optical pathlengths
are smaller than 50µm, and they are roughly aligned with the RGB
color patterns that appear under standard polarized light.

Using different probing patterns. As discussed in Section 4.1,

11



To appear in ACM TOG 0(0).

(a) scene photograph (b) HDR color frame (c) optical pathlength

(d) Frame (top) and optical pathlength (bottom) detail (R, G, B)
Figure 15: Visualizing photoelasticity. (a) We use an LED source
to scan a scene consisting of a plastic protractor in front of a mir-
ror. We consider the close-up shown in the box. (b) A standard
RGB frame under polarized light with no interference or scanning.
The color patterns on the protractor correspond to wavelength and
polarization-dependent variations of refractive index due to photoe-
lasticity. (c) Low-resolution (1 mm) measurement of optical path-
length at every pixel, shown color-coded. (d) Zooming on the pro-
tractor, top row shows (left to right) the red, green and blue chan-
nels from (b); bottom row shows optical pathlength measurements
for the same three channels and at a 10µm pathlength resolution.

by using different reference mirror configurations, we can probe
different components of the light transport matrix. In Figure 16,
we compare measurements of the same scene with two of these
configurations. The scene is a realization of the two-dimensional
mirror-diffuser 90◦ corner we have been using as example through-
out Section 4.1 (Figures 5 and 6), with the addition of a thin slab
of glass bisecting the angle between them. We do all measurements
using an LED source (Figure 5(c)) with our three spectral filters.

We first use a planar mirror in the reference arm, which allows
measuring the pathlength decomposition of the primary diagonal
of the scene’s light transport matrix (Figure 6(a)). The left part
of Figure 16(b) shows the measurements for pixels on a horizon-
tal cross-section through the scene, as a function of pathlength.
The slanted white stripe in the diffuser region of these measure-
ments corresponds to direct paths (blue in the schematic of Fig-
ure 16(a)), whose pathlengths increase steadily toward deeper parts
of the diffuse wall. Similarly, the slanted rainbow stipe in the mir-
ror region corresponds to longer, retroreflection paths (orange in
the schematic) that are addtionally affected by the spectral disper-
sion of the glass slab. The right of Figure 16(b) shows 2D image
frames from the corresponding transient sequence at two different
pathlengths. When played as a transient video, one sees the white
stipe move right to left along the diffuser wall, and then sometime
later, the rainbow stripe move right to left along the mirror wall.

Next, we place a right-angle mirror pair on the reference arm to
measure the anti-diagonal component (Figure 6(b)). This com-
ponent includes paths whose starting and ending locations are
symmetric around the glass slab, such as mirror-glass-diffuser
and diffuser-glass-mirror paths (purple in the schematic of Fig-
ure 16(a)). All such paths in this configuration have the same
length, producing a horizontal line in the pixel-pathlength visual-
ization of Figure 16(c). This implies that all frames of the corre-
sponding transient sequence are zero, except for a single frame at
the common length τo of the reflection paths, which is non-zero at
all pixels. This frame is shown in the right part of Figure 16(c).

The spread of the rainbow patterns that are induced by dispersion
in the glass slab are approximately 15µm for reflection and 30µm
for retroreflection paths. The frame in Figure 16(c) corresponds to
the green horizontal line in x-τ space. When played as a video, the
transient sequence has analogous frames for the other two colors.

(a) scene photograph, schematic, and unprocessed frame

(b) probing the main diagonal
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Figure 16: Probing different light transport matrix components. (a)
We use an LED source to scan at three wavelengths a scene consist-
ing of a thin glass slab placed between a mirror and a diffuser. A
frame is shown at the bottom-right. The scene includes three types
of paths: direct paths (blue), mirror-diffuser-mirror retroreflection
paths (orange), and two-bounce reflection paths (purple). (b) Mea-
surements of the primary diagonal of the light transport matrix,
corresponding to direct and retroreflection paths. The left visual-
izes the measurements Tm((x, yo), (x, yo), τ) over pathlength τ
for a horizontal line of pixels (a pixel-pathlength slice). The right
shows image frames Tm((x, y), (x, y), τo) for all pixels (x, y) at
two pathlength values. (c) Measurements of the anti-diagonal of the
light transport matrix, corresponding to paths with start and end
locations symmetric around the glass slab. These are two-bounce
reflection paths that, for each wavelength, all have the same opti-
cal length. This produces horizontal stripes in the pixel-pathlength
slice Tm((x, yo), (−x, yo), τ) (left), and a short sequence of all-
bright frames Tm((x, y), (−x, y), τo) in the transient video (right,
shown for the green wavelength). The rainbow patterns in (b) and
(c) correspond to optical pathlength differences of 15− 30µm be-
tween different wavelengths, due to dispersion in the glass slab.

Comparing different pathlength decompositions. We now con-
sider using an SLD source (Figure 5(c)). As discussed in Sec-
tion 4, allows measuring pathlength decompositions of the entire
light transport matrix, instead of only specific components of the
matrix as in the LED case. In Figure 17, we use the plastic toy cup
scene from Figure 9 to compare the two cases.

Figure 17(c) shows a pixel-pathlength slice for the dotted verti-
cal line of pixels through the visual field shown in (a). This was
measured using an LED source (Figure 5(c)) and corresponds to
a pathlength decomposition of the light transport diagonal. It in-
cludes only direct reflection and backscattering paths—paths that,
after scattering, exit the object from the same point at which they
entered. Because interreflection and most scattering paths are re-
moved, this decomposition facilitates measuring the 3D shape of
the object through Equation 40, as shown in Figure 9.

Figure 17(b) shows the analogous pixel-pathlength slice measured
using an SLD source (Figure 5(a)). These measurements corre-
spond to a pathlength decomposition of the entire light transport for
this scene. Comparing 2D image frames from the two decomposi-
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Figure 17: Capturing different pathlength decompositions. (a)
We scan a scene consisting of a plastic toy cup, and show pixel-
pathlength slices for a vertical cross-section of pixels through the
visual field. (b) When we capture a pathlength decomposition of
the entire light transport matrix for this scene using an SLD, the
pixel-pathlength slice includes direct paths, scattering, caustics,
and specular interrreflections. These are also apparent in the 2D
image frames of the transient sequence (orange and blue insets).
(c) When we measure the pathlength decomposition only of the pri-
mary diagonal of the light transport matrix using an LED, the pixel-
pathlength slice has only direct and backscattering paths.

tions at the same pathlength (orange insets), we observe that in the
SLD case, a much larger part of the frame has high intensity. This
is due to the large number of additional scattering paths, other than
backscattering, included in the measurements. Moreover, non-zero
measurements are present at much longer pathlengths, correspond-
ing to subsequent caustics and specular interreflections.

Light-in-flight visualizations. As discussed in Section 4.1, the
pathlength decompositions measured by our setup combined with
an SLD source, when composed into a video, are equivalent to
light-in-flight visualizations produced by conventional transient
imaging. Figure 18 shows representative frames from such visual-
izations for two miniature scenes. An additional example is shown
in Figure 17(a), for the toy cup scene. The field of view in each
scene is roughly 2×2 cm2, and the sequences are captured at a path-
length resolution of 10µm, though for visualization they have been
downsampled to 20µm. This corresponds to a temporal resolution
of 70 fs in vacuum, or 15 trillion frames per second. The project
website includes full sequences for these and additional scenes.

The scenes showcase different transport phenomena. The chess
knight scene shows qualitatively different paths, including three
types of reflections. In the zirconia scene, the central zirconia coat-
ing remains bright for several frames, due to the high amount of
subsurface scattering. There is also transmission from the rear dif-

fuse walls, through the ground glass that surrounds the central zir-
conia coating, and back toward the camera. Finally, at the vertex of
the diffuse walls, we can more intense diffuse interreflections. The
high pathlength resolution of our setup allows us to capture light-
in-flight sequences with very crisp and well-localized wavefronts.

7 Conclusion

We have presented a computational imaging system that decom-
poses light transport based on spatial layout, pathlength, wave-
length, and polarization. The system uses interferometry, and pro-
duces decompositions at a pathlength resolution of 10µm. We have
analyzed the various trade-offs in optimizing the system’s perfor-
mance, and used it to scan scenes with various optical phenomena.

The high-fidelity decompositions produced by the system may be
useful for a variety of direct and inverse problems in computer
graphics and computer vision. In particular, we are intrigued by
the challenges of developing inverse rendering algorithms for shape
and material capture that take advantage of the information avail-
able in these high-resolution light path decompositions.

Acknowledgments

We thank Prof. David Clarke for providing the zirconia sam-
ples. Funding was provided by the NSF (IIS 1161564, 1012454,
1212928), ERC, ISF, Intel ICRI-CI, and AWS research grants.

References

ABRAMSON, N. 1983. Light-in-flight recording: high-speed holo-
graphic motion pictures of ultrafast phenomena. Applied Optics
22, 2 (Jan), 215–232.

BAI, J., CHANDRAKER, M., NG, T.-T., AND RAMAMOORTHI, R.
2010. A Dual Theory of Inverse and Forward Light Transport.
In Proceedings of the 11th European Conference on Computer
Vision, ECCV’10, 294–307.

COSSAIRT, O., MATSUDA, N., AND GUPTA, M. 2014. Digital
refocusing with incoherent holography. In Computational Pho-
tography (ICCP), 2014 IEEE International Conference on, 1–9.

DORRINGTON, A. A., GODBAZ, J. P., CREE, M. J., PAYNE,
A. D., AND STREETER, L. V. 2011. Separating true range mea-
surements from multi-path and scattering interference in com-
mercial range cameras. In Proc. SPIE, vol. 7864.

GOODMAN, J. W. 1968. Introduction to Fourier Optics. McGraw-
Hill Book Company.

GOODMAN, J. W. 2000. Statistical Optics. Wiley Classics Library.

GUPTA, M. AND AGRAWAL, A. AND VEERARAGHAVAN, A. AND
NARASIMHAN, S.G. 2011. Structured light 3d scanning in the
presence of global illumination. In Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on, 713–720.

HARIHARAN, P. 2003. Optical interferometry. Elsevier.

HEIDE, F., HULLIN, M. B., GREGSON, J., AND HEIDRICH, W.
2013. Low-budget Transient Imaging Using Photonic Mixer De-
vices. ACM Trans. Graph. 32, 4 (July), 45:1–45:10.

HEIDE, F., XIAO, L., KOLB, A., HULLIN, M. B., AND HEI-
DRICH, W. 2014. Imaging in scattering media using correlation
image sensors and sparse convolutional coding. Optics Express
22, 21 (Oct), 26338–26350.

HUANG, D., SWANSON, E., LIN, C., SCHUMAN, J., STINSON,
W., CHANG, W., HEE, M., FLOTTE, T., GREGORY, K., PU-
LIAFITO, C., AND FUJIMOTO, G. 1991. Optical coherence
tomography. Science 254, 5035, 1178–1181.

13



To appear in ACM TOG 0(0).

mirror
reflection

object

direct
reflection

retroreflection

scattering

two-bounce
reflections

diffuse
walls

zirconia
coating

ground glass diffuse transmission

diffuse
interreflections

direct reflections

Figure 18: Light-in-flight visualizations for two different scenes using an SLD source. For each row, the leftmost column shows a conventional
photo of the scene, and columns two to four show representative frames. From top to bottom, the scenes are: chess knight between diffuse
wall and mirror; zirconia layer on ground glass plate between diffuse walls.
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