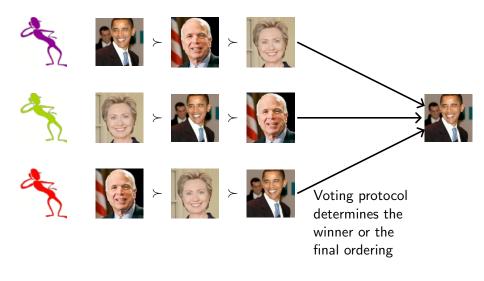
Social Choice Theory


Yiling Chen

October 27, 2008

Introduction

- Social choice: preference aggregation
- Our settings
 - A set of agents have preferences over a set of alternatives
 - Taking preferences of all agents, the mechanism outputs a social preference over the set of alternatives or output a single winner
 - Hope to satisfy some desired properties
- Voting protocols are examples of social choice mechanisms
- Readings: SLB 9.1 9.4

Voting

Example Voting Protocols

- Plurality Voting
 - Each voter cast a single vote.
 - The candidate with the most votes is selected.
- Approval Voting
 - Each voter can cast a single vote for as many candidates as he wants.
 - The candidate with the most votes is selected.
- Single Transferable Vote (Instant Roundoff)
 - Each candidate votes for their most-preferred candidate
 - The candidate with the fewest votes is eliminated
 - Each voter who voted for the eliminated candidate transfers their vote to their most-preferred candidate among the remaining candidates
- Borda Voting
 - Each voter submits a full ordering on the *m* candidates
 - Candidates of an ordering get score (m 1, m 2, ..., 0)
 - The candidate with the highest score is selected

Pairwise Elections

 $2\ {\rm prefer}$ Obama to McCain

2 prefer McCain to Hillary

2 prefer Obama to Hillary

More Voting Protocols

- Pairwise elimination
 - Pair candidates with a schedule
 - The candidate who is preferred by a minority of voters is deleted
 - Repeat until only one candidate is left
- Slater
 - The overall ordering that is inconsistent with as few pairwise elections as possible is selected.
 - NP-hard
- Kemeney
 - The overall ordering that is inconsistent with as few votes on pairs of candidates as possible.
 - NP-hard
- ... and many other voting rules

What is the perfect voting protocol?

Condorcet Condition

- A candidate is a Condorcet winner if it wins all its pairwise elections.
- A voting protocol satisfies the Condorcet condition, if the Condorcet winner, if exists, must be elected by the protocol.
- Condorcet winner may not exist.
- Many voting protocols do not satisfy the Condorcet condition.

Condorcet Circle

2 prefer Obama to McCain

2 prefer McCain to Hillary

2 prefer Hillary to Obama

7

CS286r Fall'08

An Example of Condorcet Condition

499 agents: $a \succ b \succ c$ 3 agents: $b \succ c \succ a$ 498 agents: $c \succ b \succ a$

- Which candidate is the Condorcet winner if exists?
- Which candidate is the plurality voting selected?
- Which candidate is the Single Transferable Vote selected?

Voting Paradox: Sensitivity to A Losing Candidate

35 agents: $a \succ c \succ b$ 33 agents: $b \succ a \succ c$ 32 agents: $c \succ b \succ a$

- Which alternative is the winner under plurality voting?
- Which alternative is the winner under Borda voting?
- What happens if c drops off?

Notations

- N: a set of individuals, |N| = n
- A: a set of alternatives, |A| = m
- \succ_i : agent *i*'s preference over A (e.g. $a_i \succ_i a_3 \succ_i a_5$)
- L: the set of total orders, $\succ \in L$
- L^n : the set of preference profiles, $[\succ] \in L^n$
- A social welfare function is a function $W: L^n \to L$
- \succ_W : the preference ordering selected by W
- A social choice function is a function $C: L^n \to A$

Social Welfare Function: Pareto Efficiency

- A social welfare function W is Pareto efficient if for any a_1 , $a_2 \in A$, $\forall a_1 \succ_i a_2$ implies that $a_1 \succ_W a_2$.
- It means that when all agents agree on the ordering of two alternatives, the social welfare function must select the ordering.

Social Welfare Function: Independence of Irrelevant Alternatives (IIA)

 A social welfare function W is independent of irrelevant alternatives if, for any a₁, a₂ ∈ A and any two preference profiles [≻'], [≻"] ∈ Lⁿ, ∀i

> $(a_1 \succ'_i a_2 \text{ if and only if } a_1 \succ''_i a_2) \Rightarrow$ $(a_1 \succ_{W([\succ'])} a_2 \text{ if and only if } a_1 \succ_{W([\succ''])} a_2).$

- IIA means that if (1) W ranks a_1 ahead of a_2 now, and (2) we change the preferences without change the relative preferences between a_1 and a_2 , then a_1 is still ranked ahead of a_2 .
- An example with plurality voting protocol
 - 499 agents: $a \succ b \succ c$ 3 agents: $b \succ c \succ a$ $\Rightarrow b \succ c \succ a$

498 agents: $c \succ b \succ a$

- None of our rules satisfy IIA

 $b \succ a \succ c$

Social Welfare Function: Nondictatorship

• We do not have a dictator if there does not exist an *i* such that $\forall a_1, a_2, \forall a_1, a_2, dashed a distribution of the set of t$

$$a_1 \succ_i a_2 \Rightarrow a_1 \succ_W a_2$$

• Nondictatorship means that there does not exist a voter such that the social welfare function *W* always output the voter's preference

Arrow's Impossibility Results (1951)

- If $|A| \ge 3$, any social welfare function W can not simultaneously satisfy
 - Pareto efficiency
 - Independence of irrelevant alternatives
 - Nondictatorship
- Most influential result in social choice theory
- Read the proof

Maybe asking for a complete ordering is too much? Let's consider social choice functions.

Social Choice Function: Weak Pareto Efficiency

- A social choice function C is weakly Pareto efficient if for any preference profile [≻] ∈ Lⁿ, if there exist a pair of alternatives a₁ and a₂ such that ∀i ∈ N, a₁ ≻_i a₂, then C(≻) ≠ a₂.
- It means that a dominated alternative can not be selected.
- Weak Pareto efficiency implies unanimity: If a₁ is the top choice for all agents, we must have C[≻] = a₁.
- Pareto efficient rules satisfy week Pareto efficiency. But the reverse is not true.

Social Choice Function: Strong Monotonicity

A social choice function C is strongly monotonic, if for any preference profile [≻] with C[≻] = a, then for any other preference profile [≻'] with the property that

$$\forall i \in N, \forall a' \in A, a \succ'_i a' \text{ if } a \succ_i a',$$

it must be that $C[\succ'] = a$.

Strong monotonicity means that if

- The current winner is a
- ► We change the preference profile in the way such that for if alternative

a' ranks below a previously it is still below a in the new preference

Then, a is the winner for the new preference profile.

An example with STV

9 agents: $a \succ b \succ c$	12 agents:	$a \succ b \succ c$
9 agents: $b \succ c \succ a$	\Rightarrow 6 agents:	$b \succ c \succ a$
7 agents: $c \succ a \succ b$	7 agents:	$c \succ a \succ b$

• None of our rules satisfy strong monotonicity

Social Choice Function: Nondictatorship

• A social choice function C is nondictatorial if there does not exist an agent *i* such that C always outputs the top choice of *i*.

Muller-Satterthwaite's Impossibility Results (1977)

- If $|A| \ge 3$, any social choice function C can not simultaneously satisfy
 - Weak Pareto efficienty (unanimity)
 - Strong monotonicity
 - Nondictatorship
- Social choice functions are no simpler than social welfare functions
- Intuition: We can repeatedly probe a social choice function for given pairs of alternatives, and then construct a full social welfare ordering.

Social Choice Function: Manipulability

- A social choice function is manipulable if some voter can be better off by lying about his preference
- An example with plurality voting

1 agent: $a \succ b \succ c$ 2 agents: $b \succ c \succ a$ 2 agents: $c \succ b \succ a$

Social Choice Function: Onto

- A social choice function C is onto if for each a ∈ A there is a preference profile [≻] ∈ Lⁿ such that C([≻]) = a.
- Onto means that every alternative can be a winner under some preference profile.

Gibbard-Satterthwaite's Impossibility Results (1973, 1975)

- If $|A| \ge 3$, any social choice function can not simultaneously satisfy
 - Nonmanipulable
 - Onto
 - Nondictatorship

What's possible?

Some Possibility Results: Single-Peaked Preferences

- Alternatives are a linear order (e.g. ordered on real line)
- Single-peaked preference: every voter has his most-preferred alternative and prefers alternatives that are closer to his favorite alternative
- Ask the voters to only report his favorite alternative
- The social choice function chooses the median voter's favorite alternative as the winner
- The winner is a Condorcet winner
- Nonmanipulable!