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ABSTRACT
Market making refers broadly to trading strategies that seek
to profit by providing liquidity to other traders, while avoid-
ing accumulating a large net position in a stock. In this
paper, we study the profitability of market making strate-
gies in a variety of timeseries models for the evolution of a
stock’s price. We first provide a precise theoretical charac-
terization of the profitability of a simple and natural market
making algorithm in the absence of any stochastic assump-
tions on price evolution. This characterization exhibits a
trade-off between the positive effect of local price fluctua-
tions and the negative effect of net price change. We then
use this general characterization to prove that market mak-
ing is generally profitable on mean reverting time series —
time series with a tendency to revert to a long-term aver-
age. Mean reversion has been empirically observed in many
markets, especially foreign exchange and commodities. We
show that the slightest mean reversion yields positive ex-
pected profit, and also obtain stronger profit guarantees for
a canonical stochastic mean reverting process, known as the
Ornstein-Uhlenbeck (OU) process, as well as other stochastic
mean reverting series studied in the finance literature. We
also show that market making remains profitable in expec-
tation for the OU process even if some realistic restrictions
on trading frequency are placed on the market maker.
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1. INTRODUCTION
A market maker is a firm, individual or trading strategy

that always or often quotes both a buy and a sell price for a
financial instrument or commodity, hoping to make a profit
by exploiting the difference between the two prices, known as
the spread. Intuitively, a market maker wishes to buy and
sell equal volumes of the instrument (or commodity), and
thus rarely or never accumulate a large net position, and
profit from the difference between the selling and buying
prices.

Historically, the chief purpose of market makers has been
to provide liquidity to the market — the financial instrument
can always be bought from, or sold to, the market maker at
the quoted prices. Market makers are common in foreign ex-
change trading, where most trading firms offer both buying
and selling rates for a currency. They also play a major role
in stock exchanges, and historically exchanges have often
appointed trading firms to act as official market makers for
specific equities. NYSE designates a single market maker
for each equity, known as the specialist for that stock. In
contrast, NASDAQ allows several market makers for each
equity. More recently, fast electronic trading systems have
led trading firms to behave like market makers without for-
mally being designated so. In other words, many trading
firms attempt to buy and sell an equity simultaneously, and
profit from the difference between buying and selling prices.
We shall refer to such trading algorithms generally as market
making algorithms.

In this paper, we analyze the profitability of market mak-
ing algorithms. Market making has existed as a trading
practice for a long time, and it has also inspired significant
amount of empirical as well as theoretical research [9, 5, 10,
1, 2, 3]. Most of the theoretical models [5, 9, 2, 3] view mar-
ket makers as dealers who single-handedly create the market
by offering buying and selling prices, and there is no trading
in their absence (that is, all trades must have the market
marker as one of the counterparties). On the other hand,
much of the empirical work has focused on analyzing the be-
havior of specialist market makers in NYSE, using historical
trading data from NYSE [10, 1]. In contrast, our theoretical
and empirical work studies the behavior of market making
algorithms in both very general and certain specific price
time series models, where trading occurs at varying prices
even in the absence of the market maker. This view seems
appropriate in modern electronic markets, where any trad-
ing party whatsoever is free to quote on both sides of the
market, and officially designated market makers and special-
ists are of diminishing importance.



Market Making vs. Statistical Arbitrage.
Before describing our models and results, we first offer

some clarifying comments on the technical and historical dif-
ferences between market making and statistical arbitrage,
the latter referring to the activity of using computation-
intensive quantitative modeling to design profitable auto-
mated trading strategies. Such clarification is especially
called for in light of the blurred distinction between tra-
ditional market-makers and other kinds of trading activity
that electronic markets have made possible, and the fact
that many quantitative hedge funds that engage in statisti-
cal arbitrage may indeed have strategies that have market
making behaviors.

Perhaps the hallmark of market making is the willingness
to always quote competitive buy and sell prices, but with
the goal of minimizing directional risk. By this we mean
that the market maker is averse to acquiring a large net
long or short position in a stock, since in doing so there is
the risk of large losses should the price move in the wrong
direction. Thus if a market maker begins to acquire a large
net long position, it would continue to quote a buy price,
but perhaps a somewhat lower one which is less likely to get
executed. Alternatively (or in addition), the strategy might
choose to lower its sell quote in order to increase the chances
of acquiring short trades to offset its net long inventory. In
this sense, pure market making strategies have no “view”
or “opinion” on which direction the price “should” move —
indeed, as we shall show, the most profitable scenario for
a market maker is one in which there is virtually no overall
directional movement of the stock, but rather a large amount
of non-directional volatility.

In contrast, many statistical arbitrage strategies are the
opposite of market making in that they deliberately want
to make directional bets — that is, they want to acquire
large net positions because they have a prediction or model
of future price movement. To give one classic example, in
the simplest form of pairs trading, one follows the prices of
two presumably related stocks, such as Microsoft and Ap-
ple. After normalizing the prices by their historical means
and variances, one waits for there to be a significant gap in
their current prices — for instance, Apple shares becoming
quite expensive relative to Microsoft shares given the his-
torical normalization. At this point, one takes a large short
position in Apple and an offsetting large long position in
Microsoft. This amounts to a bet that the prices of the two
stocks will eventually return to their historical relationship:
if Apple’s share price falls and Microsoft’s rises, both po-
sitions pay off. If the gap continues to grow, the strategy
incurs a loss. If both rise or both fall without changing the
gap between, there is neither gain nor loss. The important
point here is that, in contrast to market making, the source
of profitability (or loss) are directional bets rather than price
volatility.

Theoretical Model and Results.
We first summarize our theoretical models and our three

main theoretical results. We assume there is an exogenous
market where an equity can be bought and sold at prices
dictated by a given time series process. At any given point
of time, there is a single market price at which the equity can
both be bought as well as sold. The price evolution in the
market is captured by the time series. The market making
algorithm is an online decision process that can place buy

and sell limit orders with some quoted prices at any time,
and may also cancel these orders at any future time. For
simplicity, we assume that each order requests only one share
of the equity (a trader may place multiple orders at the same
price). If at any time after placing the order and before its
cancellation, the market price of the equity equals or exceeds
(respectively, falls below) the quoted price on a sell order
(respectively, buy order), then the order gets executed at
the quoted price, i.e. the trader pays (respectively, gains)
one share and gains (respectively, pays) money equal to the
price quoted on the order. We shall refer to the net volume
of the equity held by a trader at a given point of time as
inventory. Note that inventory may be positive (net long
position) or negative (net short position). To evaluate the
profit made by a market making algorithm, we shall fix a
time horizon when the algorithm must liquidate its inventory
at the current market price.

Our first and most general theoretical result is a succinct
and exact characterization of the profit obtained by a sim-
ple market-making algorithm, given any market price time
series, in the model above. If the sum of absolute values
of all local price movements (defined below) is K, and the
difference between opening and closing prices is z, we show
that the profit obtained is exactly (K − z2)/2. The positive
term K can be viewed as the product of the average volatil-
ity of the price and the duration for which the algorithm is
run. The negative term z2 captures the net change in price
during the entire trading period. Thus this characterization
indicates that market making is profitable when there is a
large amount of local price movement, but only a small net
change in the price. This observation matches a common
intuition among market makers, and provides a theoretical
foundation for such a belief. An unbiased random walk (or
Brownian motion) provides a boundary of profitability — the
algorithm makes zero expected profit (as do all trading al-
gorithms), while any stochastic price process whose closing
price has comparatively less variance from the opening price
makes positive expected profit. The last observation leads
to our second result.

Mean Reversion.
We next exhibit the benefit of obtaining a succinct and

exact expression for profit by applying it to some classes of
stochastic time series that help in understanding the circum-
stances under which the algorithm is profitable. We identify
a natural class of time series called mean-reverting processes
whose properties make our market making algorithm prof-
itable in expectation. A stochastic price series is considered
to be reverting towards its long-term mean µ if the price
shows a downward trend when greater than µ and upward
trend when less than µ. Prices of commodities such as oil
[11, 13] and foreign exchange rates [8] have been empirically
observed to exhibit mean reversion. Mean-reverting stochas-
tic processes are studied as a major class of price models, as
a contrast to stochastic processes with directional drift, or
with no drift, such as Brownian motion. One widely studied
mean-reverting stochastic process is the Ornstein-Uhlenbeck
process [7].

Formally, our second result states that out market mak-
ing algorithm has expected positive profit on any random
walk that reverts towards its opening price. This result is
quite revealing — it holds if the random walk shows even
the slightest mean reversion, regardless of how complex the



process may be (for instance, its evolution may depend not
only on the current price, but also on the historical prices
in an arbitrary way, as well as the current time). It iden-
tifies mean reversion as the natural property which renders
market making profitable.

Our third result shows that simple market making algo-
rithms yield stronger profit guarantees for specific mean-
reverting processes. As an example, we consider the Ornstein-
Uhlenbeck (OU) process. If the price series follows this pro-
cess, we show that a simple market making algorithm is
profitable when run for a sufficiently long time. Moreover,
the profit grows linearly with the duration for which the al-
gorithm is run, and the profit guarantees hold not only in
expectation, but with high probability. We prove this by
showing that while E[K] grows linearly with time, E[z2] is
upper bounded by a constant. Unlike our second result, we
do not need the assumption that the price series begins at
the long-term mean — the initial price appears in the upper
bound on E[z2].

We also show an analogous result for another mean revert-
ing process that has been studied in the finance literature,
a model studied by Schwartz [14]. In this model, the local
volatility is a linear function of price, while the OU process
models volatility as a constant.

We remark that the results outlined above assume a model
where the market maker can place and cancel orders as fre-
quently as it likes, and in fact our algorithm does so af-
ter every change in price. In practice, however, a market
maker cannot react to every change, since the price may
change with every trade in the market. We thus also ana-
lyze the profitability of our market making algorithm when
it is allowed to change its orders only after every L steps, by
simulating our algorithm on random samples from the OU
process. If the price series is the OU process, we show that
the expected profit continues to grow linearly with time.

Other Related Work.
To our knowledge, no previous work has studied market

making in an exogenously specified price time series model.
Most of the theoretical work, as mentioned before, considers
a single dealer model where all trades occurred through the
market maker at its quoted prices [5, 9, 2, 3]. This includes
the well-known Glosten-Milgrom model for market making
[9]. On the other hand, there has been a fair amount of
work in algorithmic trading, especially statistical arbitrage,
that assumes an exogenous price time series. The closest
line of research to our work in this literature is the analy-
sis of pair trading strategies under the assumption that the
price difference between the two equities show mean rever-
sion (e.g. [4, 12]). As discussed before, such strategies are
qualitatively very different from market making strategies.
Moreover, most algorithmic trading work, to our knowledge,
either analyze price series given by very specific stochastic
differential equations (similar to Sections 3.1 and 3.2 of our
paper), or empirically analyze these algorithms against his-
torical trading data (e.g. [6]). In contrast, we also give profit
guarantees for the weakest of mean reversion processes with-
out assuming a specific form (Theorem 3.1), and in fact de-
rive an exact expression for arbitrary price series (Theorem
2.1), inspired from the notion of worst-case analysis in the-
oretical computer science.

2. A GENERAL CHARACTERIZATION
We first describe our theoretical model formally. We as-

sume that all events occur at discrete time steps 0, 1, 2 . . . T ,
where T is the time horizon when the market making al-
gorithm must terminate. There is a market price Pt of the
equity at every time step 0 ≤ t ≤ T . Thus P0, P1 . . . PT
is the market price time series. We assume that all prices
are integral multiples of a basic unit of money (regulations
in NYSE/NASDAQ currently require prices to be integral
multiples of a penny).

A trading algorithm may place and cancel (possibly both)
buy and sell orders at any of these time steps, and each order
requests a single share at a quoted price Y . A buy (respec-
tively, sell) order at price Y placed at time t gets executed
at the earliest time t′ > t such that Pt′ ≤ Y (respectively,
Pt′ ≥ Y ), provided that the order is not canceled before t′.
If the buy (respectively, sell) order gets executed, then the
algorithm pays (respectively, earns) Y units of money due to
the execution. We assume no market impact — the orders
placed by the algorithm (which may get executed) do not
affect the prices in the future. We leave to future work the
important topic of incorporation of market impact into our
results.

The inventory held by the algorithm at time t is the num-
ber of shares held by it at that time. The inventory is in-
cremented upon every executed buy order, and decremented
upon every executed sell order. The initial inventory is, nat-
urally, assumed to be zero. At time T , the algorithm must
liquidate its inventory at market prices (mark-to-market). If
the algorithm has inventory x (x may be negative) at time
T , then it earns or pays xPT from the liquidation. The
profit obtained by the algorithm is then its net cash position
(positive or negative) after liquidation.

A trading algorithm is considered to be an online process
— it makes its decisions (about placing and canceling or-
ders) at time t after observing the price series up to (and
including) time t. The algorithm may or may not have ad-
ditional information about the price series. Note that we
assume no latency and arbitrary frequency — the algorithm
can look at current prices and place buy and sell orders in-
stantaneously, and it can do so as frequently as it wishes.
Again, we leave the relaxation of these unrealistic assump-
tions for future work.

Market Making Algorithms.
The basic class of market making algorithms that we con-

sider is the following: At time t, the algorithm cancels all un-
executed orders, and places new buy orders at prices Yt, Yt−
1, Yt − 2 . . . Yt − Ct and new sell orders at prices Xt, Xt +
1, Xt+2 . . . Xt+Ct, where Yt < Xt and Ct is a non-negative
integer. Such ladders of prices are set up to ensure that large
sudden fluctuations in price causes a proportionally large
volume of executions. Ct is called the depth of the price
ladder at time t, and intuitively, the algorithm believes that
the price fluctuation |Pt+1 − Pt| shall not exceed Ct. Un-
executed orders are canceled and fresh orders are placed at
every time step (changes are necessary only if Xt+1 6= Xt or
Yt+1 6= Yt). Thus the algorithm is determined by the choices
of Xt, Yt and Ct for all t, and these choices may be made
after observing the price movements up to time t.

We begin by presenting our basic result for a simple mar-
ket making algorithm, that sets Xt = Pt+1 and Yt = Pt−1.

Theorem 2.1. Let P0, P1 . . . PT be a market price time
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Figure 1: Matched and unmatched trades

series. Let K =
∑T
t=1 |Pt − Pt−1|, and let z = PT − P0.

Suppose that |Pt+1 − Pt| ≤ Dt ∀t, where Dt is known to the
algorithm at time t. If the market making algorithm, that
sets Xt = Pt + 1, Yt = Pt − 1 and ladder depth Ct = Dt,
is run on this price series, then the inventory liquidated at
time T is −z, and the profit is (K − z2)/2.

Proof. Note that at any time step t > 0, at least one or-
der gets executed if the price changes. Moreover, the num-
ber of orders executed at time t ≥ 1 is Pt−1−Pt (a negative
value indicates that shares were sold). The statement holds
as long as |Pt−1 − Pt| ≤ Ct−1, which is true by assumption.
Thus K is equal to the total number of orders that gets exe-
cuted. Moreover, the size of inventory held by the algorithm
at time t is P0 − Pt. We shall construct disjoint pairs of all
but |z| of the executed orders, such that each pair of execu-
tions comprises an executed buy and a sell execution, and
the price of the buy order is 1 less than the price of the sell
order, so that each such pair can be viewed as giving a profit
of 1.

For p > P0, we pair each sell order, priced at p, that
gets executed when price increases to p or more, with the
executed buy order, priced at p − 1, that gets executed at
the earliest time in the future when the price falls back to
p − 1 or less (if the price ever falls to p − 1 again). Note
that these pairs are disjoint, since between every rise of the
price from p− 1 to p, the price must obviously fall to p− 1.
Similarly, for p < P0, we pair each executed buy order when
the price decreases to p or less, with the executed sell order
at the earliest time in the future when the price increases to
p+ 1 or more (if it exists).

We claim that only |z| executions remain unmatched (see
Figure 2). If z > 0, then the only executions that remain un-
matched are the sell orders executed when the price increases
to p and never again falls below p: for each P0 +z ≥ p > P0,
there is one such executed order. During liquidation at time
T , these unmatched sell orders are matched by buying z
shares at price PT = P0 + z. The total loss during liquida-
tion is

∑P0+z
p=P0+1((P0 + z)− p) = z(z− 1)/2. Since there are

K − z paired executions, the profit obtained from them is
(K − z)/2. Hence the net profit is (K − z − z(z − 1))/2 =
(K − z2)/2. A symmetric argument holds for z < 0.

Note that it is typically reasonable to assume that |Pt+1−
Pt| < C for some large enough C, since it is unlikely that the

price of an equity would change by more than a few dollars
within a few seconds. In that case, one may set Ct = C ∀t.

3. MEAN REVERSION MODELS
In this section, we use Theorem 2.1 to relate profitability

to mean reversion.

Definition 3.1. A unit-step walk is a series P0, P1 . . . PT
such that |Pt+1−Pt| ≤ 1 ∀T > t ≥ 0. A stochastic price se-
ries P0, P1 . . . PT is called a random walk if it is a unit-step
walk almost surely. We say that a random walk is unbiased
if Pr [Pt+1 − Pt = 1|Pt, Pt−1 . . . P0] = 1/2, for all unit-step
walks Pt . . . P0, for all T > t ≥ 0.

We say a random walk is mean-reverting towards µ if

Pr [Pt+1 − Pt = 1|Pt = x, Pt−1 . . . P0] ≥
Pr [Pt+1 − Pt = −1|Pt = x, Pt−1 . . . P0]

for all x ≤ µ, and

Pr [Pt+1 − Pt = 1|Pt = y, Pt−1 . . . P0] ≤
Pr [Pt+1 − Pt = −1|Pt = x, Pt−1 . . . P0]

for all y ≥ µ, for all t, Pt−1, Pt−2 . . . P0 such that P0, . . . Pt
is a unit-step walk, and at least one of these inequalities for
t < T is strict (i.e., it is not an unbiased random walk).

Note that all trading algorithms yield zero expected profit
on an unbiased random walk. This is because the profit Ft
of the algorithm, if its inventory were liquidated at time t, is
a martingale, irrespective of the number of shares bought or
sold at each time step, and so the expected profit is E[FT ] =
E[F0] = 0.

Theorem 3.1. For any random walk P0, P1 . . . PT that is
mean-reverting towards µ = P0, the expected profit of the
market making algorithm that sets Xt = Pt + 1 and Yt =
Pt − 1 (any Ct ≥ 0 suffices) is positive.

Proof. Since the price does not change by more than 1
in a time step, the market making algorithm need not set
a ladder of prices. By Theorem 2.1, the expected profit is
E[(K − z2)/2]. Let Kt =

∑t
i=1 |Pi − Pi−1|, and let zt =

Pt − P0. We show by induction on t that E[Kt] ≥ E[z2t ] for
all t. For t = T , this would imply positive expected profit
for our algorithm. Without loss of generality, we assume
that P0 = µ = 0.

For t = 0, the statement is trivially true, since Kt =
zt = 0. Suppose it is true for some t ≥ 0, then we can
show that it is true for t + 1. Let Ft denote the set of
all unit-step walks such that P0 = µ = 0. For s ∈ Ft,
let α(s) = Pr [Pt+1 − Pt = 1|Pt, Pt−1 . . . P0], and let β(s) =
Pr [Pt+1 − Pt = −1|Pt, Pt−1 . . . P0]. Also, let Pr [s] denote
the probability that the first t steps of this random walk is
s. Then we have

E[Kt+1] = E[Kt + |Pt+1 − Pt|]

= E[Kt] +
∑
s∈Ft

Pr [s] (α(s) + β(s)) (1)



E[z2t+1] = E[P 2
t+1]

=
∑
s∈Ft

Pr [s]
(
α(s)(Pt + 1)2 + β(s)(Pt − 1)2

+ (1− α(s)− β(s))P 2
t

)
=
∑
s∈Ft

Pr [s]
(
P 2
t + α(s) + β(s) + 2Pt(α(s)− β(s))

)
= E[P 2

t ] +
∑
s∈Ft

Pr [s] (α(s) + β(s))

+ 2
∑
s∈Ft

Pr [s]Pt(α(s)− β(s))

≤ E[Kt] +
∑
s∈Ft

Pr [s] (α(s) + β(s))

+ 2
∑
s∈Ft

Pr [s]Pt(α(s)− β(s))

(by induction hypothesis)

= E[Kt+1] + 2
∑
s∈Ft

Pr [s]Pt(α(s)− β(s))

(by Equation 1)

It suffices to show that that Pt(α(s)− β(s)) ≤ 0 for all s ∈
Ft. This follows immediately from the definition of a mean-
reverting random walk: if Pt > P0 = 0, then α(s) < β(s),
and if Pt < P0 = 0, then α(s) > β(s). Thus we have proved
the induction hypothesis for t+ 1.

Finally, for the smallest t such that for some s ∈ Ft we
have α(s) 6= β(s), the inequality in the induction hypothesis
becomes strict at t + 1, i.e. E[Kt+1] > E[z2t+1], and so the
expected profit for T > t is strictly positive.

3.1 Ornstein-Uhlenbeck Processes
One well-studied mean-reverting process is a continuous

time, real-valued stochastic process known as the Ornstein-
Uhlenbeck (OU) process [7]. We denote this process by Qt.
It is usually expressed by the following stochastic differential
equation:

dQt = −γ(Qt − µ)dt+ σdWt ,

where Wt is a standard Brownian motion, and γ, σ are posi-
tive constants, and γ < 1. The value µ is a constant around
which the price fluctuates — it is called the long term mean
of the process. The coefficient of dt is called drift, while that
of dWt is called volatility. Observe that the drift is negative
for Pt > µ and positive for Pt < µ — this is why the process
tends to revert towards µ whenever it is far from it. γ is
the rate of mean reversion. The OU process is memoryless
(distribution of Qt given Q0 is the same as distribution of
Qt+x given Qx), and given an opening value Q0, the variable
Qt is known to be normally distributed, such that

E[Qt] = µ+ (Q0 − µ)e−γt,

Var[Qt] =
σ2

2γ
(1− e−2γt)

(2)

Now we consider the OU process Qt as a price series in
the unique model, and analyze profitability of our algorithm.
However, since the OU process is a continuous time real-
valued process, we need to define a natural restriction to a
discrete integral time series that conforms to our theoreti-
cal model. We achieve this by letting Pt to be the nearest

integer to Qt, for all non-negative integers t. The rounding
is practical since in reality prices are not allowed to be real-
valued, and further, our algorithm reacts to only integral
changes in price. We shall analyze our algorithm on Pt.

A significant hindrance in applying Theorem 2.1 to the
OU process is that the jumps |Pt+1 − Pt| are not necessar-
ily bounded by some constant C, so we have to put some
effort into determining Ct. Since the OU process is memo-
ryless, Equation 2 implies that given Qt, Qt+1 is normally
distributed with expectation µ + (Qt − µ)e−γ and variance

less than σ2/2γ, so if we set C >> σ2

2γ

√
lnT and then set

Ct = E[|Qt+1 −Qt| |Qt] + C, then the probability that the
price jump at any time exceeds the depth of the ladder is
vanishing, and such events do not contribute significantly
to the expected profit if we simply stop the algorithm when
such an event occurs.

Theorem 3.2. Let P0, P1 . . . PT be a price series obtained
from an OU process {Qt} with long-term mean µ. Then the
market making algorithm that sets Xt = Pt + 1, Yt = Pt − 1

and Ct = E[|Qt+1 −Qt| |Qt] + 10σ
2

2γ

√
lnT yields long term

expected profit Ω(σT − σ2/2γ − (µ−Q0)2).

Proof. It is easy to show, as outlined above, that the
contribution of events where a price jump larger than Ct
occurs to the expected profit is negligible. We restrict our
attention to the event when no such large jump occurs. By
Theorem 2.1, the profit on a sample series is (K − z2)/2,

where K =
∑T
t=1 |Pt − Pt−1|, and z = PT − P0. The result

follows by giving a lower bound on E[K] and an upper bound
on E[z2].

Let us derive a lower bound on E[|Qt+1−Qt|]. Note that
this quantity is equal to E[|Q′1 −Q′0|

∣∣Q′0 = Qt], where Q′t is
an identical but independent OU process. This is because
the OU process is Markov, and future prices depend only
on the current price. Since γ < 1, so Equation 2 implies
that given Qt, Qt+1 is normally distributed with variance

greater than σ2/4, since 1−e−2γ

2γ
> 1/4 when γ < 1. Hence

E[|Qt+1 − Qt|] is at least σ/4 (using properties of a folded
normal distribution). Since Pt is obtained by rounding Qt,
we have |Pt+1 − Pt| > |Qt+1 − Qt| − 2. Thus for large
enough σ (see comments at the end of the theorem), we get
that E[K] = Ω(σT ).

E[z2] is approximated well enough by E[(QT−Q0)2], since
|z − (QT − Q0)| < 2 for all possible realizations. Again,
Equation 2 implies thatQT−Q0 has mean µ+(Q0−µ)e−γT−
Q0 = (µ − Q0)(1 − e−γT ) and variance σ2(1 − e−2γT )/2γ.
Thus, we have

E[(QT −Q0)2] = Var[QT −Q0] + E[QT −Q0]2

=
σ2(1− e−2γT )

2γ

+ (µ−Q0)2(1− e−γT )2

<
σ2

2γ
+ (µ−Q0)2

Thus, E[K] grows linearly with T , while E[z2] is bounded
by a constant. This completes the proof.

A few points worth noting about Theorem 3.2: our lower
bound on E[K] is actually (σ

4
−2)T and σ must exceed 8 for

this term to be positive and grow linearly with T . This is just



an easy way to handle the arbitrary integral rounding of Qt.
Intuitively, the algorithm typically cannot place orders with
prices separated by less than a penny. Thus the volatility
needs to be sufficient for integral changes to occur in the
price series. If the unit of money could be made smaller,
the loss due to rounding should diminish. Then σ in terms
of the new unit increases linearly, while γ remains constant
(Qt becomes cQt for some scaling factor c). Thus for any
constant σ, a sufficiently small granularity of prices allows us
to apply Theorem 3.2. In fact, it is not difficult to see from
the above analysis that the profit will grow linearly with
time as long as the limiting variance of the process σ2/2γ
is larger than (or comparable to) the granularity of bidding
(normalized to 1). If this does not hold, then the algorithm
will rarely get its orders executed, and will neither profit nor
lose any significant amount.

Moreover, in the proof of Theorem 3.2, one may note that
z is a normal variable with variance bounded by a constant,
while the lower bound on K grows linearly with T , and oc-
curs with high probability. Thus the profit expression in
Theorem 3.2 not only holds in expectation (as is the case
in Theorem 3.1 for general mean-reverting walks), but with
high probability. Furthermore, for even the smallest of γ,
Theorem 3.2 says that the profit is positive if T is large
enough. Thus, even when mean reversion is weak, a suffi-
ciently long time horizon can make market making profitable.

Finally, the profit expression of the OU process has a term
(µ−Q0)2. While we can treat it as a constant independent
of the time horizon, we can also apply another trick to re-
duce this constant loss if Q0 is far from µ. This is because
Equation 2 tells us that the process converges exponentially
fast towards µ — in time t = γ−1 log |Q0−µ|, |E[Qt−µ]| is
down to 1, and Var[Q0 − µ] is less than σ2/γ. Thus if the
horizon T is large enough, then the market maker would like
to simply sit out until time t (if allowed by market regula-
tions), and then start applying our market making strategy.

3.2 The Schwartz Model
We now analyze another stochastic mean reversion model

that has been studied in the finance literature and was stud-
ied by Schwartz [14]. The OU process assumes that the
volatility of the price curve is a constant. Schwartz pro-
posed a model where the volatility is a linear function of the
price:

dQt = −γQt(lnQt − lnµ)dt+ σQtdWt,

where µ is the long term mean price of the process, γ < 1,
and σ < 1. Also assume that Q0 > 0.

We shall show that the profitability of our market making
algorithm for the Schwartz model is analogous to Theorem
3.2: E[K] grows linearly in T , while the expected loss due
to liquidation E[z2] is bounded by a constant, and hence the
expected profit grows linearly in T . Applying Ito’s lemma,
Schwartz showed that logQt is an OU process, and so Qt
has a lognormal distribution, such that

αt = E[logQt] = (lnµ− σ2

2γ
)(1− e−γt) +Q0e

−γt,

β2
t = Var[logQt] =

σ2

2γ
(1− e−2γt)

Then, by properties of lognormal distributions, we have

E[Qt] = eαt+β
2
t /2

Var[Qt] = (eβ
2
t − 1)e2αt+β

2
t

Suppose the unit of price is small enough so that lnµ >
σ2

2γ
(again, this is essentially equivalent to choosing a finer

granularity of placing orders). Note that shrinking the size
of a unit step by a factor c leaves both σ and γ unchanged,
but inflates µ by c. Since αt and βt are upper bounded
by constants, so are E[Qt] and Var[Qt], and hence E[z2] is
bounded by a constant.

It remains to show that E[K] = Ω(T ). It suffices to show
that E[|Qt+1 −Qt|] is at least some constant. Note that Qt
is always positive, since it has a lognormal distribution. We
shall show that E[|Qt+1−Qt|

∣∣Qt] is at least some constant,
for any positive Qt. Since Qt is a Markov process, this is
equal to E[|Q′1−Q′0|

∣∣Q′0 = Qt] for an identical but indepen-

dent process Q′t. Observe that α1 ≥ (lnµ− σ2

2γ
)(1−e−γ) > 0,

if Q0 > 0. Also, we have β2
1 > σ2/4. Thus

Var[Q′1] > eσ
2/4(eσ

2/4 − 1) > σ2eσ
2/4/4 .

This shows that Var[Q′1], given Q0, is lower bounded by a
constant (that depends on σ). Since Q′1 has a lognormal dis-
tribution, it follows that E[|Q′1 −Q′0|] is also lower bounded
by a constant. This completes the proof for E[K] = Ω(T ).

4. TRADING FREQUENCY
Our price series model makes the assumption that the

market maker can place fresh orders after every change in
price. In practice, however, there are many traders, and each
trade causes some change in price, and an individual trader
cannot react immediately to every change. We thus con-
sider a more general model where the market maker places
fresh orders after every L steps. Let us consider the same
market making algorithm as before, in this infrequent order
model. Thus, for every i, at time iL the algorithm places or-
ders around PiL in a ladder fashion as before. These orders
remain unchanged (or get executed if the requisite price is
reached) until time (i+ 1)L, and then the algorithm cancels
the unexecuted orders and places fresh orders. We say that
L is the trading frequency of the algorithm.

The profit of the algorithm can no longer be captured suc-
cinctly as before. In particular, the profit is not exclusively
determined by (nor can it be lower bounded by a function
of) the prices P0, PL, P2L . . . PiL . . . at which the algorithm
refreshes its orders — it depends on the path taken within
every interval of L steps and not just the net change within
this interval. Still, some of our profit guarantees continue to
hold qualitatively in this model. In particular, we simulate
the OU process and run our algorithm on this process, to
analyze how trading frequency affects the profit of the algo-
rithm. We simulate an OU process with γ = 0.1, σ = 1 and
the initial price equal to the long term mean.

First, we find that the profit still shows a trend of growing
linearly with time, for different trading frequencies L that
are still significantly smaller than the time horizon T . We
simulate the algorithm with different time horizons T and
different trading frequencies, and all of them show a strong
linear growth (see Figure 2).

Also, the profit is expected to fall as the trading frequency
increases (keeping time horizon fixed), since the number of
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Figure 2: Profit increases linearly with the time
horizon, for different trading frequencies 1, 2, 5, 10, 20.
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Figure 3: Mean profit decreases slowly with trading
frequency (Horizon T = 1000).
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Figure 4: Standard deviation of profit increases
quickly with trading frequency, then stabilizes
(Horizon T = 1000).

trades executed will clearly decrease. We find that for a
large enough horizon (T = 1000), this is indeed the case, but
the decrease in profit is quite slow, and even with trading
frequency as high as 40, the expected profit is more than
80% of the expected profit with unit trading frequency (see
Figure 3).

We computed average profit by simulating each setting
10000 times, to get a very narrow confidence interval. In
fact, the standard deviation of the profit never exceeds 50
for any of our simulations, so the confidence interval (taken
as 2σ divided by the square root of sample size) is less than
1, while the expected profit is much higher in all the cases.

The standard deviation in the profit itself goes up sharply
as the trading frequency is increased from 1, but then quickly
stabilizes (see Figure 4).The increase in variance of profit
can perhaps be explained by the increase in variance of the
number of shares that are liquidated at the end.

5. CONCLUSIONS
In this paper, we analyze the profitability of simple mar-

ket making algorithms. Market making algorithms are a
restricted class of trading algorithms, though there is no
formal specification of the restrictions. Intuitively, the re-
striction is that a market maker has to always be present
in the market, and offer prices that are close to the mar-
ket price. A future direction would be to put such a formal
restriction, and try to design an optimal trading algorithm
that satisfies the formal restrictions.
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