CS286r: Topics at the Interface between Computer Science and Economics

Fall 2012

Information, Prediction, and Collective Intelligence

Yiling Chen yiling@seas.harvard.edu

Course website: http://www.eecs.harvard.edu/cs286r/

Today's Plan

- CS 286r Fall 2011 topic and syllabus
- Example ideas and issues
- A bit background on decision making under uncertainty

Economics & Computation

Seek tractable interface

Theories, algorithms, and systems that satisfy both economic and computational constraints.

Lots of Compelling Applications

- Internet Monetization:
 Google, Yahoo!, Microsoft are using auctions to sell ads
- Markets are used for information aggregation
 - Google, Yahoo!, Microsoft, GE, etc. have internal prediction markets
- Social network: Facebook, Twitter, LinkedIn, Flickr, LibraryThing
- Peer-to-Peer systems
- Reputation systems

• • •

This Course

- Rotating topic course
- Previous
 - Fall 2011. Computational Social Choice
 - Fall 2010. Information, Prediction, and Collective Intelligence
 - Fall 2009. Assignment, Matching, and Dynamics
 - Fall 2008. Social Computing
 - Spring 2008. Computational Finance
 - Spring 2007. Computational Mechanism Design
 - Spring 2006. Multi-agent Learning and Implementation

...

Seminar style

CS 186 in Spring is an introductory course to the area of economics and computation.

Course Goals

- Provide an introduction to an emerging, interdisciplinary literature
- Develop a level of comfort with both economic and computational thinking
- Develop general skills related to reading papers, identifying research questions
- Provide a basis for continued research.

Fall 2011

 Information, Prediction, and Collective Intelligence

 Algorithmic, game theoretic, and conceptual questions related to obtaining information, making predictions, and getting tasks done by the crowds.

Crowds Are Smarter...

- Who wants to be a millionaire?
 - Fifty-FiftyCorrect 50% of the time
 - Phone-A-FriendCorrect 65% of the time
 - Ask the AudienceCorrect 91% of the time

Crowds Are Smarter...

- Jelly-Beans-in-the-Jar Experiment
 - Professor Jack Treynor ran the experiment in his class
 - with a jar that held 850 beans
 - the group estimate was 871
 - only one of the 56 people in the class made a better guess

Are Crowds Smarter?

- No always
 - Bad committee decisions
 - Endless group meetings

 In this course, we focus on mechanisms that intend to make crowds smarter.

Structure of the Course

- Introductory lectures (6 lectures)
 - This one, game theory (2), and basics of proper scoring rules and prediction markets (3)
- Research Papers
 - Prediction Markets
 - Crowdsourcing and User-Generated Content
 - Peer Prediction
- One or two guest lectures

Prerequisites

- Math background is important! At least a basic course in linear algebra (such as M 21b, AM 21b, or equivalent)
- A course on probabilities and statistics (STAT 110 or equivalent)
- An algorithm course (CS 124, or equivalent)
- Familiarity with the concept of rationality. An AI course or an economics/game theory course.

CS 186 and advanced course in algorithms, microeconomics, game theory are helpful but **not** required.

Reading Materials

- For each class, we have provided some reading materials. We ask you to read them and submit your comments by midnight before class.
- There will be reading questions for each class.
 - Your comments should include good faith answers to these questions.
 - The questions are designed to facilitate in understanding or to encourage discussion.

Grading

Problem sets	25%	2 homework problem sets		
Participation	25%	Reading papers, submitting reading comments and questions before class, and participation in class discussion. (Note: Absent students rarely contribute to discussions.)		
Presentation of one or two sets of research papers	15%	A short survey and critique of the papers. See presentation notes. Lead class discussion.		
Project	35%	Project proposal, class presentation, and final report.		

Project

- Goal: develop a deep understanding of a specific research area and to the extend possible to work on an open research problem.
- Can be theoretical, computational, experimental, or empirical.
- Can write an exposition paper, but needs novelty!
- Tentative project due dates:
 - Tuesday 10/30: project proposal due
 - Wednesday 12/5: brief project presentation
 - Friday 12/7: project report due

Logistics

- TF
 - Mike Ruberry
- Office Hours
 - Yiling: Monday 2:30 3:30, MD 339
 - Later will add office hours likely on Thursdays to meet with students in advance of presenting papers
 - Mike: Wed 11---12, MD second floor lounge

Missed course materials from the TF

Example Ideas and Issues

Events of Interest

- Will category 3 (or higher) hurricane make landfall in Florida in 2011?
- Will Google reinstate its Chinese search engine?
- Will Democratic party win the Presidential election?
- Will Microsoft stock price exceed \$30?
- Will there be a cure for cancer by 2015?
- Will sales revenue exceed \$200k in April?

• • • • • •

Incentivize Experts

 Suppose I'd like to get information about tomorrow's weather (sunny or rainy?)

 How can I ensure that an expert will tell me his/her true probability assessment of the event?

Proper Scoring Rules

Combining information is hard!

- If we have multiple experts, how can we combine their information?
- Some impossibility results on combining probability distributions.
 - T(f1, f2, f3, ..., fn)
 - External Bayesianity
 - Independent of irrelevant alternatives
 - => dictatorship

Orange Juice Futures and Weather

Trades of 15,000 pounds of orange juice solid in March

 Orange juice futures price can improve weather forecast! [Roll 1984]

Bet = Credible Opinion

Q: Is Vinay Deolalikar's proof of P≠NP correct?

"If Vinay Deolalikar is awarded the \$1,000,000 Clay Millennium Prize for his proof of P≠NP, then I, Scott Aaronson, will personally supplement his prize by the amount of \$200,000."

 Scott Aaronson: "I have a way of stating my prediction that no reasonable person could hold against me: I've literally bet my house on it."

Prediction Markets

- A prediction market is a futures market (betting intermediary) that is designed for information aggregation and prediction.
- Payoffs of the traded item is associated with outcomes of future events.

Intrade

Barack Obama to be re-elected President in 2012

Last prediction was: \$5.87 / share

Today's Change: A +\$0.02 (+0.3%)

Contract Type: 0-100 ②

58.7%

CHANCE

Event: 2012 Presidential Election Winner (Individual)

Function of Markets 1: Get Information

Speculation → price discovery
 price ≈ expectation of r.v. | all information

\$1 if Obama wins, \$0 otherwise **Event** Value of Contract Payoff Outcome P(Obama wins) \$1 Obama wins \$P(Obana wins) l-P(Obama wins) Obama loses Equilibrium Price ≈ Value of Contract ≈ P(Obama Wins) Market Efficiency 25

A Combinatorial Betting Example

- 2⁵¹ outcomes, 2^{2⁵¹} combinations
- Allow participants to bet on logical formulas
 - Create contracts on the fly:\$1 if Ohio AND Florida OR New York, \$0 otherwise
 - Specify buy price and quantity
- Computationally hard!

We will look at

 Design (better) market mechanisms for information aggregation (connecting to proper scoring rules)

Characterizing information aggregation with rational agents

Enabling combinatorial markets

What If We Won't Know the Outcome?

- Eg. Conditional events, subjective information
- Surveys
 - Eg. How many hours per week you spent on assignments?
 - Less than 5 hours
 - 5-10 hours
 - 10-20 hours
 - Above 20 hours

Peer Prediction and Bayesian Truth Serum

Organized Human Computation

- An old idea
 - Halley's Comet (1758)
 - 3 astronomers calculate the trajectory of the Halley's Comet
 - The Math Table Project (1938-1948)
 - 450 out-of-work clerks
- Computer: a person who performs calculation as a profession
- Given a "computing plan"
- Quality assurance: computation was done by two independent human computers and checked by a third

The web changes everything ...

The ESP Game

Galaxy Zoo

More than 200,000 participants from 113 countries; more than 100 million classifications

eBird

Amazon Mechanical Turk (Mturk)

All HITs

1-10 of 2372 Results

Sort by: HITs	Available (most first) 💠 🚳	Show all details	Hide all details			1 <u>2 3 4 5</u> > <u>Next</u> >> <u>Last</u>		
Give Your Opin	ion - Simple and Quick! (US)					View a HIT in this group		
Requester:	CrowdSource	HIT Expiration Date:	Jun 27, 2013 (52 weeks)	Reward:	\$0.16			
		Time Allotted:	32 minutes	HITs Available:	14906			
find email for g	iven person via web search (~60sec) approved requ	Not Qualified to work	on this HII (who	View a HIT in this group				
Requester:	Sebastian Darr	HIT Expiration Date:	Jul 30, 2012 (4 weeks 4 days)	Reward:	\$0.03			
		Time Allotted:	5 minutes	HITs Available:	8488			
Get researcher	's email address (~60sec) daily approval!	Not Qualified to work	on this HIT (Why?)	View a HIT in this group				
Requester:	Sebastian Darr	HIT Expiration Date:	Jul 27, 2012 (4 weeks 1 day)	Reward:	\$0.03			
		Time Allotted:	5 minutes	HITs Available:	8180			
web search for email address (~60sec) daily approval! Not Qualified to work on this HIT (Why?) View a HIT in this group								
Requester:	Sebastian Darr	HIT Expiration Date:	Jul 27, 2012 (4 weeks 1 day)	Reward:	\$0.03			
		Time Allotted:	5 minutes	HITs Available:	6684			

Demographics of Turkers

Household Income for Indian workers

Year of Birth for US workers

Year of Birth for Indian workers

[Source: Ipeirotis blog, http://www.behind-the-enemy-lines.com/2010/03/new-demographics-of-mechanical-turk.html]

Demographics of Turkers

Weekly Income from Mechanical Turk

Number of HITs completed per week

Time spent on Mechanical Turk per week

[Source: Ipeirotis blog, http://www.behind-the-enemy-lines.com/2010/03/new-demographics-of-mechanical-turk.html]

We'll look at

 Quality and workflow control for crowdsourcing

How to incentivize "better" contributions

A Bit Background on Decision Making under Uncertainty

Uncertainty, Risk, & Information

Uncertainty

Risk

Information

Uncertainty & Risk, in General

- Ω: State Space
- ω are disjoint exhaustive states of the world
- ω_j : rain tomorrow & have umbrella & ...
- Pr(ω)

Uncertainty & Risk, in General

Alternatively,

- Overlapping events
 - E1: rain tomorrow
 - E2: have umbrella

•
$$|\Omega|=2^n$$

Modeling Information

• E: Event of interest

- P(E, S_i, S_j): Prior distribution
- Nature draws event outcome and signals
- Bayesian agents can form belief $P(E=e|S_i=s_i)$

An Economist's Approach to Modeling Information

- Ω : state space
- Pr(ω)
- An agent has a partition of the state space*
- Nature draws ω*
- Agent observes S_i(ω*)
- Agent forms belief $P(\omega | S_i(\omega^*))$

Preference and Utility

• Preference

• Utility, u(ω)

Decision Making Under Uncertainty

Maximize expected utility

$$- E[u] = \sum_{\omega} Pr(\omega)u(\omega)$$

• Decisions (actions) can affect $Pr(\omega)$ or $u(\omega)$

	0				E[u]
Don' t Take umbrella	0.5	0	0	0.5	.5*10+.5*(-10) =0
Take umbrella (but I may leave it at the library)	0.25	0.25	0.25	0.25	.25*10+.25*8+.25* (-4)+.25*(-10) =1

Should take umbrella!

Utility of Money and Risk Attitude

Outcomes are \$

- Risk attitude:
 - risk neutral: $u(x) \sim x$
 - risk averse (typical): u concave (u''(x) < 0 for all x), e.g. u(x) = log(x)
 - risk prone: *u* convex

Risk Attitude & Hedging

- ightharpoonup I' m risk averse, u(x) = log (x), insurance company A is risk neutral, u(x)=x.
- ➤ I believe that my car might be stolen with prob. 0.01

ω_1 : car stolen	ω_2 : car not stolen
$u(\omega_1) = \log(10,000)$	$u(\omega_2) = \log(20,000)$

> I buy \$10,000 insurance for \$125

$$u(\omega_1) = \log(19,875)$$
 $u(\omega_2) = \log(19,875)$

➤ Insurance company A also believes Pr(car stolen)=0.01

$$u(\omega_1) = -9,875$$
 $u(\omega_2) = 125$

$$E[u]=.01 (-9875)+.99$$

(125) = 25 >0

I am happy to buy insurance. Insurance company A is happy to sell it. The transaction allocates risk.

Probability and Speculating

- Suppose that I'm also risk neutral, u(x)=x.
- But I think that the probability for my car being stolen is much higher than 0.01, say 0.1.
- A \$10,000 car insurance is worth

to me, but the insurance company only asks for \$125.

Too cheap!

Buy the insurance, and I get \$825 on expectation.

I am speculating the insurance company.

For Mon. 9/10

- Lecture on games with complete information
- Submit comments on Chapter 3 and Chapter 5.1 of Multiagent Systems book before midnight 9/9
 - download the readings from the Schedule page of the course website
 - Those who took 286r in Fall'11, readings are different and classes are optional for 9/10 and 9/12
- Reading questions will be posted on the Schedule page
- Please give TF your email address so that we can register you for the comment submission system