
1

Towards Iterative 
Combinatorial Exchanges

FCC Combinatorial 
Auction Workshop, 
November 23nd, 2003

David C. Parkes
Harvard University.

11/23/2003 Combinatorial Exchanges

Motivation
Highly fragmented spectrum (frequency, 
control, and geography)

result of administrative allocation

2.5-2.7 GHz Spectrum
more total spectrum than cellular and PCS
19@ 6MHz Instructional TV 
12 @ 6MHz MDS (wireless cable)

493 Basic Trading Areas

A “big bang” exchange:
make large amounts of spectrum (assigned & 
unassigned) available
improve allocative efficiency, take advantage of new 
technologies
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Combinatorial Exchanges
Multiple buyers and sellers, 
w/ expressive bids

e.g. “Buy {NYC, PHL, BOS} and sell {DC} for 
$1million”

FCC can also participate, actively: 
e.g. “Convert ITFS licenses into wireless 
phone licenses”

and passively (define aggregations):
e.g. “all contiguous 6 MHz blocks of spectrum 
in a BTA are equivalent”
may help computationally, and mitigate hold-
out problem
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Stylized Example. 

A

B

$10

$5

AB $51

AB $40

sell buy

Efficient trade: 1 and 2 sell, 3 buys. 
Surplus $51. 

agent 1 agent 3

agent 2 agent 4
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Main Challenges

Winner-determination
likely to be harder than one-sided 
auctions (Sandholm’s talk)

Economic
mitigating the bargaining or “hold-out”
problem

Preference elicitation
hard valuation problems
iterative designs likely important to 
guide elicitation
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Bargaining Problem. 

Example:

Many ex post Nash equilibrium:
($5,$15,$20); ($10,$10,$20); ($15,$15,$30)…
presents an efficiency problem, because agents 
need to select an equilibrium.

Construct ex post Nash:
allocate πt to agent i with  Vt(N)-Vt(N\i)>0
adjust Vt+1(N), Vt+1(N\i) to vt+1=max(0,vt-πt)
repeat.

A

B
AB

$15

$15

$20
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A One-Shot Design

Collect bids
Compute V(N), value of surplus-
maximizing trade given all bids

implement this outcome
Compute V(N\i), value of surplus-
maximizing trade without bids from i
Divide surplus ∑i πi=V(N) across 
participants; try to mitigate 
bargaining problem

(Parkes, Kalagnanam and Eso, 2001)



5

Surplus Division

minπ f(π)

s.t.   ∑i πi · V(N) (BB)

πi · V(N)-V(N\i), ∀ i (*)

πi ≥ 0, ∀ i (P)

Payoffs πi ≥ 0 to solve:

Note1: πVCG,i=V(N)-V(N\i)

Note 2:(BB) and ∑j≠ iπj ≥ V(N\i) (1-core) is 
equivalent to (*)

Lemma. Any mechanism satisfying (BB), (*), and 
(P) has ex post regret πVCG,i for agent i given bids 
of other agents
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VCG-Based Schemes

Threshold. Minimize worst-case (πVCG,i-πi)
Fractional. Each agent gets πi=µ πVCG,i

Large. Allocate payoff in order π1¸ π2¸ π3…
Reverse….

Somewhat natural to consider VCG-based 
schemes, that divide surplus according to 
ex post πVCG (“payoff left on table”)

Threshold scheme minimizes the maximal ex post
regret across all agents.
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Stylized Representations

figure here XX

a
d

ju
st

e
d

 p
ri

ce

bid price
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Threshold Rule
Implements a slight variation of the k-DA 
uniform price, double auction with k=0.5
(Wilson’85)

Threshold payoff division implemented with 
price p*=0.5(min(ak+1,bk)+max(bk+1,ak)), asks
a1<a2<…<am, bids b1>b2>…bm, k items trade

Second-best (for efficiency) for the 
standard single item bargaining problem,
for i.i.d. Uniform [0,1] values and costs

linear-strategy equilibrium; with v=(2/3)v+1/12
and c=(2/3)c+1/4 (Myerson & Satterthwaite, 83)

^

^
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Experiments: ex ante BNE
Consider a very limited strategy space:

bi(S)=(1-α) vi(S), ∀ S, if buyer
bi(S)=(1+α)vi(S), ∀ S, if seller

Compute a symmetric ex ante BNE:

α* = arg maxα Ei E-i[vi(x*(b))- pi(b)] 
where x*(b) is allocation given bids b, price pi(b)
is payment by agent i, and the expectation is 
taken w.r.t. distribution over types of agents.

Naive Approach

Enumerate a payoff matrix, compute ex 
ante BNE

-0.5 -0.48  …  0  …  0.12  0.14  …  0.98  1.0

-0.5
-0.48

…
0
…

0.12
0.14

…
0.98
1.0

α-i

αi

1.5 1.4
1.3

Took 2.5 days, for a grid size of 0.01, 500 
instances, 5 buyers, 5 sellers, 20 goods, 10 
bids/asks per agent. 



8

11/23/2003 Combinatorial Exchanges

Algorithm

Choose a small set of strategies 
A0=(α1,…,αM)∈ [a,b]0, for some 
initial search space.
Assume all agents except agent 1 
play αt; initialize to α0.
Compute the BR, α*∈ At, given 
average payoff to agent 1 and αt

Move αt+1 towards α*; refine [a,b]t+1

to focus search, select new At+1.

(w/ David Kyrch)
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Details.
new center: αt+1=1/3 α* + 2/3 αt

|A|=7
terminate when αt+1 is within 0.01 of αt

new range: [a,b]t+1 centered on αt+1

(b-a)t+1=3/4 (b-a)t, if αt+1∈ [a,b]t

(b-a)t+1=4(αt+1-α*), otherwse.

Final validation step:
discretize [a,b]0 to grid level 0.01, and check 
α* is a BR to α*

-i.



9

11/23/2003 Combinatorial Exchanges

Experimental Results
5 buyers, 5 sellers, 20 goods
10 bundles/ agent. 

Generate using Uniform (Sandholm’99); with 
value U[0,1], same # items (drawn at random) in each 
bundle.

assume XOR logic between bundles
Winner determination performed by 
commercial MIP software.
Evaluate over 500 instances. 

Speed-up: 1% accuracy in 2.5 CPU hours 
(c/f 2.5 days for enumeration)

11/23/2003 Combinatorial Exchanges

Example 1- VCG payments
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Example 2- No Discount
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Example 3- Large
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Example: Validity

Validating ex post Nash of Threshold rule 

α*

Main Results
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Large
Threshold
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Equal
No Discount



12

Large rule

α* ≈-0.08
Optimal strategy is to overbid, and win 
πi=πVCG,i

Implies that at least one participant has 
negative ex post payoff in BNE

Unstable to high bids:
a buyer can always benefit from overstating 
her vaue if she knows she will win

NB. d’AGVA “expected Groves” mechanism is BB and 
ex post EFF, but only ex ante IR. (also needs an 
informed designer) (Arrow’79,d’Aspremont & Gerard-Varet’79)
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Threshold Scheme
Threshold is most efficient after Large   
(95% vs. 99%)
Threshold rule is more stable:

buyers cannot benefit from overstating values 
(quite general assumptions)
a buyer, i, receiving payoff division πi, can only 
benefit from decreasing its bid (by less than πi) 
when there is some V(N\j), j≠i, without i.

Also, reduces nicely to existing double 
auctions in special cases. 
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FCC: A Special Player

Can also apply core constraints for the FCC
πFCC+ ∑i∈ Lπi ≥ V(FCC ∪ L), ∀ L (N\FCC)

Nice alternative to involving the FCC as an 
active bidder. 

⇒ the FCC cannot make more revenue simply 
by looking at the outcome

cannot propose an alternative with more revenue 
that a subset of participants will all prefer (based 
on their reports). 

(Milgrom)
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Preference Elicitation

One-sided auctions
ascending-price auctions (linear prices, 
non-linear prices, non-linear & 
anonymous prices)
proxy agents (decouple best-response 
queries from user queries)
direct elicitation approaches (query-
based, e.g. value queries, ordinal 
queries, etc.)
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Elicitation for Exchanges:
Key Problems.

Item discovery
scope of exchange may not be initially 
known

Price discovery
may be no trade in initial stages

Bargaining
the bargaining problem is omnipresent
not present in one-sided auctions when 
VCG outcome in core.
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High-Level Approach.
Proxied

users make direct but incremental statements 
about valuations for different bundles.

Threshold-based.
solve WD to maximize reported surplus, and 
implement the Threshold payoff-division rule

Activity Rules.
consistency: incremental value information 
must not contradict with earlier information. 
require “progress” across stages.

Staged w/ Final Round.
price-based feedback

Information Required.

1 2 3 4

Consider information:
v’i(S)=max(0,vi(S)-πi)

Can compute VCG, if:
1. Complete info from all losers
2. high enough bids from 
winner i to place them in 
V’(N\j), for all j≠ i, or complete 
info if not possible for any πi>0.

For Threshold, also need:

3. high enough bids from 
winner i to gain some payoff 
division, or complete info if not 
possible for any πi>0

effect of 
decreasing 
π3 by δ

effect of 
decreasing 
π1 by δ
(decreases 
threshold)

threshold

agent



16

11/23/2003 Combinatorial Exchanges

Proxy Information:
Upper & Lower Bounds

Agents provide bounds on values of 
bundles

vi(S) ∈ [bi(S), bi(S)]
Can be via a compact bidding language 
(“upper-bid” and “lower-bid”)
Maintain consistency, w/ b(S’)≥b(S), ∀ S’⊇S;  
b(S’)≤b(S), ∀ S’⊆S

Refine bounds between stages, and   
introduce new bundles
“Relaxed→Tight” information allows early price 
discovery
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Activity Rule (Flavors).

Consistency:
can refine bounds on existing bundles
new bounds within existing bounds

Progress:
tighten limits on allowed slack between 
bounds in later stages
limit # of additional bundles that can 
introduced in later stages

At some point, move to a final stage.
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In Each Stage…
Compute Threshold outcome w/ high bids 
and low asks

“high” outcome
provides feedback in early stages

Compute Threshold outcome w/ low bids 
and high asks

“low” outcome
provides feedback in later stages
finally implement this outcome

Price-Feedback/ Buy-side

Compute high bid prices pbid,j for items j
based on high bids bi(S)

Provide accurate winner feedback, suggest 
how far can drop price and still win.

minp,δ δ

s.t. bi(S’)≥ ∑j∈ S’pbid,j ∀ winner i, winner S’

bi(S)· [bi(S’)-∑j∈ S’pbid,j]+δ+∑j∈ Spbid,j ∀ winner i, loser S

bi(S)· δ+∑j∈ Spbid,j,  ∀ loser i

(assumes an XOR bidding language, use
Kohlberg (72) iterative scheme to define unique solution,
might also want to do smoothing across stages.)
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Price-Feedback/ Buy-side

Compute low bid prices pbid,j for items j
based on low bids bi(S)

Provide accurate loser feedback, suggest 
how far must increase price to win.

minp,δ δ

s.t. bi(S) · ∑j∈ Spbid,j ∀ loser i

bi(S’)≥ ∑j∈ S’pbid,j-δ ∀ winner i, winner S’

bi(S)· [bi(S’)-∑j∈ S’pbid,j]+δ+∑j∈ Spbid,j ∀ winner i, loser S
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Price Feedback/ Sell-side
Compute low ask prices pask,j to give 
winner feedback, suggest how far can 
increase price and still win

make these prices accurate for winners, with 
bi(S’)· ∑j∈ S’pask,j, ∀ winners (i, S’)

Compute high ask prices pask,j to give 
loser feedback, suggest how must drop 
price to win

make these prices accurate for losers, with 
bi(S) ≥ ∑j∈ Spbid,j,  ∀ losers i
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Item Discovery.

Also need buy-side prices for items 
offered on sell-side

perhaps 0.5(pask,j+pask,j) is a good 
signal?

Also need sell-side prices for items 
requested on buy-side

perhaps 0.5(pbuy,j+pbuy,j) is a good 
signal?
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Next steps.

Put together a computer-based simulation 
of this system.
Implement simple bidding agents, check 
for bad behaviors, refine.

Implement more sophisticated bidding 
agents, check for bad behaviors, refine.
Work on computational properties, 
provide scalability.

Run in an Experimental Economics Lab?
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Conclusions.

A combinatorial exchange can facilitate a 
“big bang” spectrum auction;  allow 
incumbnents and new entrants to trade
Key issues are:

computational
economic (bargaining problem)
preference elicitation

Proposed a straw-model design, lots of 
interesting questions going forward!


