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Abstrar  The Santa Fe  Artificial  Stock Market  consists of a 
central computa t ional  market  and a number  of artificially 
intelligent agents. The agents choose  between investing in a 
stock and leaving their  money in the bank, which pays a 
fixed interest  rate. The  stock pays a stochastic dividend 
and has a price which fluctuates according to agent  demand.  
The agents make their  investment  decisions by at tempting 
to forecast  the future re turn  on the stock, using genetic 
algorithms to generate,  test, and evolve predictive rules. 
The artificial marke t  shows two distinct regimes of behav-  
ior, depending on pa rame te r  settings and initial conditions. 
One regime corresponds to the theoret ical ly predic ted  ra- 
tional expectat ions behavior ,  with low overall  t rading 
volume, uncorre la ted  price series, and no possibility of tech- 
nical trading. The o ther  regime is more  complex, and corre- 
sponds to realistic marke t  behavior ,  with high t rading 
volume, high intermit tent  volati l i ty (including G A R C H  be- 
havior), bubbles  and crashes, and the presence of technical 
trading. One pa ramete r  that can be used to control  the 
regime is the explorat ion rate,  which governs how rapidly 
the agents explore  new hypotheses  with their genetic algo- 
rithms. At  a low explorat ion rate  the marke t  settles into the 
rat ional  expectat ions equil ibrium. A t  a high explorat ion 
rate it falls into the more realist ic complex regime. The 
transit ion is fairly sharp, but  close to the boundary  
the outcome depends  on the agents '  initial "beliefs" - if 
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they believe in rat ional  expectat ions they occur and are a 
local at tractor;  otherwise the marke t  evolves into the com- 
plex regime. 
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Introduction 

Today ' s  s tandard  economic theory,  general  equi l ibr ium 
theory,  or rational expectations, says in its shortest  state- 
ment  that  agents - t raders,  firms, individuals, etc. - deduce 
their op t imum behavior  by logical processes from their  cir- 
cumstances.  It further assumes that  the  agents have com- 
plete information,  that  they are perfect ly rat ional ,  that  they 
have common expectat ions,  and that they know that every-  
one else has these proper t ies  too. 

One of the consequences of this approach is that  a lmost  
everything is decided at t ime zero. The agents first work out  
how the whole future should be, and then the world just 
plays itself out. There  is no dynamics,  no learning, and no 
evolution. 

When  this rat ional  expectat ions approach is appl ied  to a 
stock market ,  1 it implies that  there  should not be anything 
like marke t  moods  or psychologies.  There  should not  be 
bubbles,  crashes, or  bursts, and volatili ty should be low. 
There  should not be much trading volume; the only reason 
one person would t rade with another  would be if something 
happened  externally,  changing the assets available for in- 
vestment.  There  should not  be money to be made  by tech- 
nical trading, i.e., simply extrapolat ing pat terns  in a t ime 
series of price, because any regulari ty in the price series 
should have al ready been arbi t raged away by the ra t ional  
agents. 

These ideas do not  fit the facts of real stock marke ts  very 
well. There  do seem to be bubbles,  crashes, and moods  of 
the market .  The  volume and volatili ty are much higher than 
can be accounted for by external  changes, and people  on 
Wall  Street  do seem to make  money  by technical trading]- 
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There  are some ways to modify the theory or  its applica- 
t ion to a t tempt  to come to terms with these discrepancies,  
including a number  of ideas of bounded rationality, and 
theories involving noise traders. 3 However ,  none of  these 
theories seem wholly convincing, 4 and we descr ibe here a 
very different approach.  

In starting this project  in 1989, 5 we asked what agents 
really do in markets ,  and more  general ly in the world. Our  
answer, then and now, is that  they (a) classify whatever  
they see, (b) notice pat terns,  (c) generalize and form inter- 
nal models,  ideas, or rules of thumb, and (d) act on the basis 
of those internal  models.  We decided to build a stock marke t  
along these lines in the computer ,  whereby agents would 
notice the pat terns  in the price (and in any o ther  da ta  they 
had access to), form models,  and then t rade on that basis. 

Of course, the agents have to evaluate and adapt  their  
internal  models  after seeing how well they work. Actually,  
each agent  has a number  of different  ways of predict ing 
the future, and is continually evaluating and compar ing 
them. The ones that work well gain more  weight and are 
used more  often. The ones that  fail are eventual ly thrown 
out  and replaced.  

The agents buy and sell stock in the market ,  and thereby 
affect the stock price. What  the agents do affects the 
market .  What  the marke t  does affects the agents. So the 
marke t  behavior  emerges  f rom the collective behavior  of 
the agents, who are themselves coevolving. 

F rom an economics viewpoint,  the aim of our work is to 
examine a marke t  of interact ing agents that  can learn with 
an open set of possibilities, and see whether  it converges 
to a rat ional  expectat ions equil ibr ium or  to something 
else. The core result  is that there  are two equilibria.  The 
model  can show rat ional  expectat ions behavior ,  and it can 
show realistic marke t  behavior ,  but  they are two separa te  
equilibria.  

Structure of the market 

The basic structure of the model  is N agents (i - 1, 2 , . . . ,  
N)  interacting with a central  market .  Typically N - 50-100. 
There  may be several  types of  agents. In contrast  to many 
o ther  interacting agent  models,  the agents do not interact  
directly with each other,  but only via the market .  

In the marke t  there is a single stock, with price p(t) per  
share at t ime t. Time is discrete (t = 1, 2 , . . . ) ;  per iod t lasts 
from time t until t + 1. The stock pays a dividend d(t + 1) 
per  share at the end of per iod  t. The dividend times series 
d(t) is itself a stochastic process defined independent ly  of 
the marke t  and the agents '  actions. We normal ly  use a 
simple random process with persis tence called an AR-1 or 
Orns te in -Uhlenbeck  process,  given by 

d(t + 1) = pd(t) + an(t)  

where d means the offset of the dividend from a fixed mean 
d, so d(t) = d + d(t), p and a are parameters ,  and q(t) is a 
Gaussian random variable,  chosen independent ly  at each 
time t from a normal  distr ibution with mean 0 and variance 1. 

There  is also a fixed-rate asset, the bank, which simply 
pays a constant  rate  of re turn r per  period.  The  agents have 
to decide how much money they want to put  into the stock 
(which has a fixed total  number  of shares - if somebody  
buys, someone  else has to sell), and how much they want 
to leave in the bank.  A t  any t ime t, each agent  i holds some 
number  of shares of  stock hi(t) and has some amount  of cash 
Mi(t) in the bank. The agent 's  total  wealth is then 

wi(t) = Mi(t) + hi(t)p(t) 

A t  the end of the per iod,  one time step later,  this portfol io 
becomes worth 

~/(t  + 1) = (1 + r)Mi(t ) + hi(t)p(t + 1) + hi(t)d(t + 1) 

where the three terms are the money in the bank,  with 
interest,  the  new value of the stock, and the dividend pay- 
out. v~(t + 1) and w(t + 1) are not  the same, because  trading 
occurs in between,  potent ia l ly  moving assets be tween the 
bank and the stock. 

The t rading process is managed by a specialist inside the 
market .  The  specialist  also has the job  of setting p(t + 1). Its 
fundamenta l  p rob lem at each t ime step is that  the number  
of bids to buy and offers to sell may not  match, and yet  the 
total  number  of shares of stock is fixed. We have explored 
several  approaches  to this issue, including ra t ioning of bids 
or  offers, 6 having the specialist maintain a buffering inven- 
tory, and holding an auction in which the price at a given 
t ime is adjusted until the bids and the offers match closely. 
Only the last approach,  an auction, is descr ibed further 
here. If there  are more  bids than offers, then the price is 
raised, so the bids drop  and the offers increase, until they 
match closely. 

One more  thing that  is defined at the level of the overall  
marke t  s tructure is the informat ion that  is made  available to 
the agents for use in their  decision making. In principle,  this 
informat ion set (which we call the world) consists of the 
price, dividend, total  number  of bids, and total  number  of 
offers at each past  t ime step. There  are o ther  variables that  
we have tr ied adding too, including a predic tor  of the future 
dividend (which can be done in the computer ,  by running 
the stochastic process forward, but  not  in the real  world!),  
and a r andom "sunspot"  variable around which the agents 
might coordinate  their  actions. 

However ,  we usually condense most  of this information 
into a string of worm bits. At  any given time, the world that 
the agents see consists of  a string of 80 or so bits, and some 
recent  price and dividend information.  Some examples  of 
these bits, each of which is ei ther true or false at each time 
t, are as follows: 

3. 1. rp(t)/d(t) > z, 
2. rp(t)/d(t) > 1; 

5. 3. rp(t)/d(t) > 7, 
4. p(t) > MAlo{p(t)}; 
5. p(t) > MA~oo{p(t)}; 
6. p(t) > MAso,{p(t)}; 
7. Always  true. 



Here MAn{p(t)} means a moving average over the most 
recent n steps of p(t), i.e., 

1 r t- l  

MAo{p(t)} =  Ep(t- k) 

The quantity rp(t)/d(t) would be 1 in a simple equilibrium 
notion of fundamental value, so the deviation from 1 gives 
a sense of how much the stock is underpriced or overpriced. 

We classify bits into three categories: technical, funda- 
mental, and control. Technical bits, by definition, just de- 
pend on the past price series, and are the only ones that a 
strict technical trader would use. Bits 4-6 in the above 
list are technical bits. Control bits are useless ones that we 
include as experimental controls, like bit 7 in the above 
list. Fundamental  bits are anything else, generally involv- 
ing the dividend series in some way. Bits 1-3 above are 
fundamental. 

Structure of the agents 

Fundamentally, the agents have to decide whether to invest 
in the stock or the bank. If, at any time step, they conclude 
that they want to invest more in the stock than previously, 
then they submit a bid to buy more  shares. Conversely, they 
may submit an offer to sell shares. 

We have examined many types of agents, and our 
software can mix different types in the same market  (a 
description of condition-action agents is given elsewhere6). 
However, this paper only treats forecasting agents that use 
a number  of predictors, each of which attempts to predict the 
future return (price plus dividend). By seeing how well their 
predictors work, the agents can estimate their accuracy (pre- 
diction variance) and update or replace poor ones. Because 
they know the variance of their overall predictions, the 
agents can also perform a risk aversion analysis called 
C A R A  (constant absolute risk aversion). This is a standard 
computation, based on an exponential utility function and 
used in portfolio analysis, that gives an optimal division of 
funds between two possible assets when the mean and vari- 
ance of the expected return is known for each asset. If agent 
i's estimate of the mean return is E~[p(t + 1) + d(t + 1)] 
with variance o~, then under C A R A  (and an additional 
Gaussian assumption) the ideal number  of shares to hold is 
given by 

h~ircd(t ) = E~[p(t + 1) + d(t + 1 ) ] -  p(t)(1 + r) 

where k is a parameter,  the degree of relative risk 
aversion. 

The agents' predictors actually consist of two parts, a 
condition part and a forecast part. The condition part deter- 
mines when each particular predictor is activated, as ex- 
plained below. Only activated predictors produce forecasts, 
using their forecast part. The forecast part, in the simplest 
case, is just a linear rule 

29 

Eij[p(t + 1) + d(t + 1)] = aij(p(t) + d(t)) + bij 

where Eij means the expected (predicted) value for agent i's 
jth predictor, and aij and b~j are the coefficients that consti- 
tute the forecast part  of this predictor. Although this is itself 
a very simple linear form, the condition parts make the 
overall prediction only piecewise linear. 

Every time a predictor is activated, the agent checks to 
see how well it performed when the period is over. This is 
used to maintain a variance 0 2 for each predictor, as a 
weighted moving average of its past squared errors. 

There are several ways to combine a set of predictions 
and variances, E~/[p(t + 1) + d(t § 1)] and o 2, for each 
activated predictor j, into the single overall forecast and 
variance, E,[p(t + 1) + d(t + 1) and ~, needed for the 
C A R A  calculation. The simples, used for all the results 
described here, is to use the currently best predictor, the 
one with the smallest 02 across all activated j's. 

The condition part of  each predictor is implemented 
with a classifier system, in which the condition part  is 
represented by a ternary string of  the symbols {0, 1, #}, one 
for each of the world bits that the agent can observe (we can 
restrict agents to see only a subset of all the world bits). A 
condition symbol of 0 means that the corresponding 
world bit must be false for the condition part to match, 
while conversely 1 requires true. A condition symbol of  # is 
a don't care, and matches either true or false. For example, 
the condition string ##1###0# matches the world bits 
01110100 (where 0 stands for false and 1 for true), but not 
10100110. 

Some of an agent's predictors may give good predictions 
when they are activated, while others may not. A genetic 
algorithm is used to adjust and evolve a better set of  pre- 
dictors. For each agent at each period we run the genetic 
algorithm with probability 1/K, where K is a parameter.  The 
genetic algorithm eliminates some of the worst predictors 
(those than have the highest variance) and generates some 
new ones to replace them. Typically we replace 20 out of 
100 predictors. 

To generate new predictors we first clone some of the 
best existing ones in the current population. Then we 
either perform mutation or crossover (or sometimes both) 
on those cloned predictors. Mutation means changing a few 
condition bits, and modifying the a~js and bijs by a ran- 
dom amount. We use parameterized distributions of such 
changes. 4 Crossover means selecting two parent predictors, 
taking some condition bits from each, and interpolating 
their a~js and bg~s. It is not clear whether crossover has any 
positive effect beyond causing large jumps in the space of 
condition bits. We also sometimes perform generalization, 
i.e., changing some of the fixed bits (0s and ls) to don ' t  cares 
(#s) in predictors that have not been activated for a long 
time. 

In choosing predictors for replacement and cloning, we 
mainly select according to variance; low variance means 
high fitness, but we also impose a small penalty for each bit 
that is not a #, giving a little pressure not to condition the 
predictors on too many bits. 
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Results 

Our  main initial goal in this project  was to look for realistic 
marke t  behavior.  We asked in part icular  whether  the 
price series of our stock would look like a real stock 
price series. We realized that  goal  several  years  ago, finding 
reasonably  realistic marke t  behavior  as shown by time se- 
ries analysis. 

In 1995, we star ted a second phase of exper iments  by 
asking whether  our  agents could also shown rat ional  expec- 
tat ions behavior.  If homogene i ty  is assumed,  so that all 
the agents have the same beliefs, then the rat ional  expecta-  
tions equil ibr ium for this marke t  can be computed,  and has 
a simple form in which the price is l inear in the dividend. 
Thus, rat ional  expectat ions behavior  is within the frame- 
work of our agents '  l inear  forecasts. 

We  tr ied giving the agents initial beliefs in the rat ional  
expectat ions result  by setting the initial condit ions for aq 
and b o to the calculated rat ional  expectat ions values. We 
found that  they stayed there,  and that  the ra t ional  expect-  
ations equi l ibr ium is in fact a local a t t rac tor  - when we 
initially s tar ted the agents fairly close to it, they went to that  
state. It resulted in a very stable market ,  just  as the theory 
says, with very little t rading going on, and homogeneous  
agent  behavior.  

On the other  hand, when we started the agents with 
almost  any other  conditions,  they never  set t led into rat ional  
expectat ions behavior  even after millions of periods,  and 
the system behaved much more  like a real  market .  Thus 
we had found two regimes of behavior,  which we call the 
"rat ional  expectat ions regime" and the "complex regime," 
respectively.  

In the rat ional  expectat ions regime, we see relat ively 
low trading volume, with very little informat ion in the price 
series that can be exploi ted for prediction.  The forecast  
parameters  - the aqs and bqs - all converge to be the same; 
the agents end up becoming homogeneous .  The technical 
bits are not  useful, and are d ropped  from use. 

In the complex regime, we find that the agents remain  
heterogeneous  and continuously coevolve. One  of the tests 
we did was to take a successful agent out  of  the market ,  
freeze it, and then reinsert  it thousands of per iods  later.  We  
found that it did not  do well at all. Even though the marke t  
looks statistically much the same, an agent  that  was trained 
in one per iod  does not  work well later,  because the detai led 
informat ion that it is picking up in its bits and forecasts is 
changing over time. 

The trading volume remains  much higher in the complex 
regime. It varies greatly, and has G A R C H  behavior.  It is 
autocorre la ted ,  and there are correlat ions be tween volume 
and volatility. These are all features found in real  markets.  
There  are somet imes bubbles  and crashes, fairly minor  ones 
usually, and over-reactions,  and the agents do use the tech- 
nical bits, despi te  the small cost to do so. 

More  recently, in a third phase  of our experiments ,  4 we 
looked at what happens  as we change certain parameters .  
We found that we can force the marke t  into ei ther  regime 
with appropr ia te  pa rame te r  values, using the same random 

Table 1 Averages of explorations over 25 runs 

Fast exploration Slow exploration 

o 2.147 _+ 0.017 2.135 _+ 0.008 
0.320 _+ 0.020 0.072 _+ 0.012 

p~ 0.007 _+ 0.004 0.036 _+ 0.002 
p~2) 0.064 + 0.004 0.017 -+ 0.002 

initial condit ions,  but  with in termediate  pa r ame te r  values, 
the initial condit ions dictate which regime is reached,  as in 
the second phase of the experiments.  

In most experiments ,  we varied only the pa ramete r  K 
that  dictates how often the genetic algori thm is run and 
controls  how often the agents explore  new possible ways of 
predict ing the future. We  frequently compared  two values, 
K - 250 and K = 1000, that  we call fast exploration and slow 
exploration, respectively.  Fast  explorat ion puts us in the 
complex regime, while slow explorat ion gives the rat ional  
expectat ions regime. We always used r andom initial condi- 
tions in these experiments .  

An  example  of our t ime series analysis was a fit of the 
price series to a l inear recurrence relat ion 

p(t + 1 ) = A + B p ( t )  + e(t + 1) 

where e(t) represents  the residual variat ion after fitting the 
best  values for A and B. In a rat ional  expectat ions equilib- 
rium, the residuals e(t) ought to be independent ,  identically 
dis t r ibuted Gaussian variables,  because the price is driven 
by the AR-1  dividend series. So we tested the e(t) series for 
normal i ty  and correlat ions.  Table  1 shows some results for 
fast and slow explorat ion,  from averages over  25 runs of 
each case. 

The first line, o, shows the s tandard  deviat ion of e(t). The 
second line, ~c, shows the excess kurtosis, a measure  of non- 
Gaussian behavior  based  on the fourth moment .  Fas t  explo- 
ra t ion gives much larger deviat ions from normali ty,  in 
the direct ion of the "fat tails" seen in real marke t  data. 
The third and fourth lines show two measures  of  single- 
step autocorrela t ion,  Pl = <e(t)e(t + 1)>, and f{2) = <g(t)2 
8(t + 1)2> - o 4. 

The A R C H ( I )  test 7 gives about  37 for the fast explora-  
t ion case, compared  with 3.2 for the slow explora t ion  case. 

This sort  of analysis can be extended by including addi- 
t ional terms in the recurrence relation. For  example ,  to test 
whether  the rp(t)/d(t) > 3technical  bit is actually of any use 
in predict ing the price series, we write 

p(t  + 1 ) =  A + Bp(t) + Clrp/d>~(t ) q- ~(t ~- 1) 

where Ir~,/,l>5(t) is 0 or  1 as appropr ia te  at each t. We  then 
fit the coefficients as before.  In this case we found C = 
-0 .44  +_ 0.10 for the fast explorat ion case, compared  with 
C = 0.05 _+ 0.09 for the slow explorat ion case. Thus, this bit 
is useful in the fast but  not  the slow case. 

There  is much more  yet to explore with this model. 
Given a whole computa t ional  marke t  in the computer ,  we 
can exper iment  with what  happens  upon changing the mar- 



ket  structure, the specialist, the dividend series, and so on. 
Some other  future plans include those listed below. 

1. Mult iple stocks. It is not  clear whether  introducing 
more  than one stock will fundamental ly  change our results, 
but  the exper iment  seems worthwhile.  

2. Impact  of wealth. As the agents get more wealthy, 
they do not actually have more  influence in the marke t  
under  our C A R A  assumptions.  There  are several ways to 
change those assumptions.  

3. Improved prediction.  There  are many ways to im- 
prove our agents '  predict ion methods.  We have experi-  
mented  briefly with neural  ne twork  predictors,  but did not 
find significantly different  results. 

4. Transi t ion details. The transi t ion between the two be- 
havior  regimes deserves deta i led  study. Is it really a sharp 
transit ion,  or is it gradual?  What  are the sizes of the basins 
of at t ract ion of the two regimes? How do they scale with the 
number  of agents, and with o ther  parameters?  

5. Informat ion control.  It is possible to give different  
agents different informat ion sets, and thus explore the ef- 
fect of private information.  W e  can also provide informa- 
tion that is re leased per iodical ly  to all agents, like news 
reports.  

6. Strategic behavior.  We can have a longer time hori- 
zon, so that  the agents can look further ahead, ra ther  than 
just one per iod  at a time. Then we need to allow the agents 
to have strategic behavior  over mult iple periods. 
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