FFS: The Fast File System
-and-
The Magical World of SSDs

The Original, Not-Fast Unix Filesystem

Disk

Superblock

[nodes

Data

Directory

[node

Metadata

Direct ptr ~
Indirect ptr

2-indirect ptr

I-number

Data

i

The Original, Not-Fast Unix Filesystem

Disk
Superblock * Design: Disk is treated like a linear array of
bytes
Inodes + Problem: Data access incurs mechanical
delays!
Inode for file X . G
al « Accessing a file's inode and then a data
. block requires two seeks
Dirkntry: . , G
o . * Block allocation wasn't clever, so files in
X" -=> inode# .
the same directory were often far apart
Data » Block size was 512 bytes, increasing
penalty for poor block allocation (more
Data block for X disk seeks!)

« Result: File system only provided 4% of the
sequential disk bandwidth!

FFS: The Fast File System

« Goal: Keep the same file system abstractions (e.g., open(), read()),
but improve the performance of the implementation

 First idea: Increase block size from 512 bytes to 4096 bytes

 Increases min(bytes_returned_per_seek) --> decreases number
of seeks

« 8x as much data covered by direct blocks --> fewer indirect
block accesses --> decreases number of seeks

« Second idea: Disk-aware file layout

« Consider disk geometry and mechanical delays when deciding
where to put files

« Keep related things next to each other to reduce seeks

3/29/2016 CS161 Spring 2016 4

R/W heads FFS: Datg Layout Spindle

z H

Platter

Cylinder

3

FFS: Data Layout

Directory allocation: Use a
cylinder group with few allocated
directories and many free inodes

REICHYIMEIN - File allocation: Allocate file inodes

Inodes irI cylinder group of parent
directory; allocate file data blocks
in cylinder group of file inode

« Allocation policies driven by
expectation of temporal locality

e Files in the same directory will
Data be accessed together (e.q.,

I
I
I
| source code compilation, a
| browser's web cache)
« Providing spatial locality for

Cylinder data with temporal locality
group decreases disk seeks!

Superblock [

Inode bitmap

FFS: Data Layout

OS wants to
read 0 and 1,
but disk only
allows one
outstanding
request . . .

FFS: Data Layout

OS wants to
read 0 and 1,
but disk only
allows one
outstanding
request . . .

Request 0

FFS: Data Layout

OS wants to
read 0 and 1,
but disk only
allows one
outstanding
request . . .

The disk head is out of
position for block 1 :-(.
S0, a sequential file
scan incurs rotational
latency for each block!

(A Dislike

FFS: Data Layout

OS wants to
read 0 and 1,
but disk only
allows one
outstanding
request . . .

0 solve this problem),
FFS determines the

number of skip blocks
by empirically
measuring disk
characteristics

FFS: Data Layout

OS wants to
read 0 and 1,
but disk only
allows one
outstanding
request . . .

FFS: Data Layout

OS wants to
read 0 and 1,
but disk only
allows one
outstanding
request . . .

Request 0

FFS: Data Layout

Due to the skip

OS wants to
read 0 and 1,
but disk only
allows one
outstanding
request . . .

block, the disk head
IS NOwW In position to
handle the request!

Block Placement Tricks: Still A Good Idea?

« Modern disks are more powerful than FFS-era disks

 Use hardware-based track buffer to cache entire track during
the read of a single sector

 Buffer writes, and batch multiple sequential writes into single one

« Keep a small reserve of "extra” physical sectors so that bad
sectors can be avoided (disk implements a virtual-to-physical
mapping!)

« Modern disks don’t expose many details about geometry

« Only guarantee that sectors with similar sector numbers are
probably “close” to each other w.r.t. access time

« SO, modern file systems use “block groups” instead of “cylinder
groups”

CG #0 CG #1 CG #2

Ensuring Consistency After Crashes

« Q: What happens to on-disk structures after an OS crash, a
hard reboot, or a power outage?

« A: What would Gallant do? He would ensure that the file
system recovers to a reasonable state.

« Some data loss is usually ok . ..
« ... butit's NOT ok to have an unmountable file system!
« There's a trade-off between performance and data loss

3/29/2016 CS161 Spring 2016 16

Crash Consistency: Creating a New File

« To create a new file “foo”, you need to:
1. Update inode bitmap to allocate a new inode
2. Write the new inode for "foo” to disk
3. Write an updated version of the directory that points to the new inode

« The order of the writes makes a difference! Suppose (1) has
completed . . . how should we order (2) and (3)?

Directory Directory Directory
_____ ‘oar’ | |l bar” | 'bar’
[node #X Inode #X Inode #X
|___foo’ . Crashi\ | [Ttod” 17 /Points to
Inode #Y Fash: Inode #Y cadness
, | Directory
Directory Directory Inode #Y ar”
- "oar” ‘bar’” || Metadata Inode #X_
Inode #X Inode #X_| 15 prre=NULL cracni\| _Inode #Y
s Metadata

Not referenced by a dirent . . . but no dirents point to junk/old stuff! Afte@_b_a_tgﬁt_r;:[_jaﬁ
crash, run fsck to find unreferenced inodes and mark them as unused.

Crash Consistency Using Synchronous Writes
For a file system operation that requires multiple ordered writes,
wait for each write to hit the disk before issuing the next one

e Ex: On file create(), issue write to the inode, wait for it to
complete, then issue write to the directory

Good: File system will be left in a consistent state after crash
Bad: fsck is slow (it has to make multiple passes over metadata)

Bad: Synchronous writes make the file
system slow

« We'd like to be able to issue IOs
immediately, and have multiple IOs
in-flight at any given time: provides
the disk with maximum ability to
reorder writes for performance

« However, reordering for performance
may violate the desired consistency
semantics

- PRy

MARGO WILL SLAY THE CONSISTENCY
DRAGON

d\bvunvvwn'vvwku v L_

HDD

-

ST ==

SSD

Solid-state Storage Devices (SSDs)

 Unlike hard drives, SSDs have no mechanical parts

« SSDs use transistors (just like DRAM), but SSD data
persists when the power goes out

« NAND-based flash is the most popular technology,
so we'll focus on it

« High-level takeaways

1. SSDs have a higher $/bit than hard drives, but
better performance (no mechanical delays!)

2. SSDs handle writes in a strange way; this has
implications for file system design

3/29/2016 CS161 Spring 2016 21

Solid-state Storage Devices (SSDs)

An SSD contains blocks made of pages
« A pageis afew KB in size (e.q., 4 KB)
« A block contains several pages, is usually 128 KB or 256 KB

Page 0 1 2 3,4 5 6 7 8 9 10 11,

Y Y Y
Block 0 1 2

To write a single page, YOU MUST OI_I,
ERASE THE ENTIRE BLOCK FIRST

A block is likely to fail after a
certain number of erases (~1000
for slowest-but-highest-density

flash, ~100,000 for fastest-but-
lowest-density flash)

SSD Operations (Latency)

- Read a page: Retrieve contents of entire page (e.g., 4 KB)

e Costis 25—75 microseconds

« Costis independent of page number, prior request offsets
 Erase a block: Resets each page in the block to all 1s

« Costis 1.5—4.5 milliseconds

« Much more expensive than reading!

 Allows each page to be written
« Program (i.e., write) a page: Change selected 1s to 0Os

« Costis 200—1400 microseconds

 Faster than erasing a block, but slower than reading a page

Hard disk: 4—10ms avg. seek latency
2—7/ms avq. rotational latency

;

Page

Y e L
— - ——

100111104 00100010
\.5

110100111)

\ 4

L] -
-----__--— ——___—

first erase the entire block

-

11111111

11111111

11111111

11111111

\ 4

Now we can write the first page . . .

... but what if we needed the data in
the other three pages?

00110011

11111111

11111111

11111111

Flash Translation Layer (FTL)

« Goal 1: Translate reads/writes to logical blocks into
reads/erases/programs on physical pages+blocks

 Allows SSDs to export the simple “block interface” that
hard disks have traditionally exported

 Hides write-induced copying and garbage collection
from applications

« Goal 2: Reduce write amplification (i.e., the amount of
extra copying needed to deal with block-level erases)

« Goal 3: Implement wear leveling (i.e., distribute writes
equally to all blocks, to avoid fast failures of a “"hot" block)

« FTL is typically implemented in hardware in the SSD, but is
implemented in software for some SSDs
3/29/2016 CS161 Spring 2016 25

FTL Approach #1: Direct Mapping

« Have a 1-1 correspondence between logical pages and
ohysical pages

Logical
pages

N A I A

Physical
pages

e Reading a page is straightforward
« Writing a page is trickier:
Read the entire physical block into memory

Update the relevant page in the in-memory block

Frase the entire physical block

Program the entire physical block using the new block value

Sadness #1: Write amplification
« Writing a single page
requires reading and
writing an entire block

Sadness #2: Poor reliability

o If the same logical block is
repeatedly written, its
physical block will quickly
fail

e Particularly unfortunate

for logical metadata
blocks

FTL Approach #2: Log-based mapping

 Basic idea: Treat the physical blocks like a log
« Send data in each page-to-write to the end of the log

« Maintain a mapping between logical pages and the
corresponding physical pages in the SSD

Logical

pa96501234567891011

SN PTY

Page\O 1 2 3 4 5 © 7“8 9 10 11}

Y Y Y
Block 0 1 2

Logical-to-physical map

Page\O 1 2 3.4 5 6 7“8 9 10 11}

Y Y Y
Block 0 1 2

write(page=92, data=wO0) Logical-to-physical map
LEerase(block@) 92 --> 0

program(page0, wO0)
logHead ++

Page, 0 1 2 3,4 5 6 7 8 9 10 11

Y Y Y
Block 0 1 2

write(page=92, data=wO0)
erase(block0)

LE program(page0, wO0)
logHead ++

write(page=1/, data=w1l)
program(pagel, wl)

Logical-to-physical map
92 --> 0
17-->1

logHead ++
Log head
Uninitialized l
Valig wOlwl| 1*| 1*
Page\O 1 2 3}\4 5 6 7}\8 9 10 11}
/ f Y
Block 0 1 7

write(page=92, data=wO0) Logical-to-physical map

erase(blockO) 92 --> 0
Eprogram(page@, wO0) 17 --> 1
logHead ++
write(page=1/, data=w1l) Advantages w.r.t. direct mapping
program(pagel, wl) « Avoids expensive read-modify-
logHead ++ write behavior
« Better wear levelling: writes get
Log head spread across pages, even if
l there is spatial locality in writes
Uninitialized at logical level

Valig wOlwl| 1*| 1*

Page\O 1 2 3)k4 5 0 7“8 9 10 11}

Y Y Y
Block 0 1 2

write(page=92, data=w4) Logical-to-physical map

erase(blockl) 9><O 5 > 4
Epr@gf’am(pageél, w4) 17 - 1
logHead+ + 33 s 5
68 --> 3

Garbage version of
logical block 92!

Log head
Uninitialized l
Valid wO|wl w2 w3 w4 | 1*| 1*| 1*

Page, 0 1 2 3,4 5 6 7 8 9 10 11

Y Y Y
Block 0 1 !

At some point, FTL must: Logical-to-physical map
« Read all pages in physical block 0 9>0 92 -->4

« Write out the second, third, and 17 --> 1
fourth pages to the end of the log| 33 --> 2
» Update logical-to-physical map 68 --> 3

Garbage version of
logical block 92!
Log head

Uninitialized l
wO|wl|w2 w3 w4 | 1*| 1*| 1~

Page\O 1 2 3)k4 5 0 7}\8 9 10 11}

Y Y Y
Block 0 1 2

Valid

Trash Day Is The Worst Day

 (Garbage collection requires extra read+write
traffic

‘_ Overprovisioning makes GC less painful

SSD exposes a logical page space that is
smaller than the physical page space

By keeping extra, "hidden” pages around,
the SSD tries to defer GC to a background
Joerk task (thus removing GC from critical path

. of a write)

« SSD will occasionally shuffle live (i.e., non-
garbage) blocks that never get overwritten

 Enforces wear levelling

SSDs versus

ard Drives (Throughput)

Random Sequential
Reads Writes Reads Writes

Device (M B/S) (|V| B/s) (M B/‘S_Q___(.M B/s)
Samsung 840 Pro SSD |103 287 ,:"421 38’4",
Seagate 600 SSD { 84 250 424 374 ‘-._
Intel 335 SSD *.39 2221 344 354
Seagate Savio 15K.3 HD cél 2 23 PRRE
................. t,’..--------"“‘::’

Dollars per storage bit: Hard drives are 10x cheaper!

Source: "Flash-based SSDs” chapter of “Operating Systems: Three
Fasy Pieces” by the Arpaci-Dusseaus.

