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Abstract

We consider the following problem, which arises in the context of distributed Web
computations. An aggregator aims to combine specific data from n sources. The aggre-
gator contacts all sources at once. The time for each source to return its data to the
aggregator is independent and identically distributed according to a known distribution.
The aggregator at some point stops waiting for data and returns an answer depending
only on the data received so far. If the aggregator returns the aggregated information
from k of the n sources at time t it obtains a reward Rk(t) that grows with k and
decreases with t. The goal of the aggregator is to maximize its expected reward.

We prove that for certain broad families of distributions and broad classes of reward
functions, the optimal plan for the aggregator has a simple form and hence can be easily
computed.
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1 Introduction

We consider the following problem: an aggregator aims to combine specific data from n sources.
The aggregator contacts all sources simultaneously. The time for each source to return its data
to the aggregator is independent and identically distributed according to a known distribution.
The aggregator at some point stops waiting for data and returns an answer depending only
on the data received so far. If the aggregator returns the aggregated information from k of
the n sources at time t it obtains a reward Rk(t) that grows with k and decreases with t.

At first blush this problem might seem artificial; however it is quite common in the Web
context where results are composed from many sources and there is often a conflict between
returning fast results versus returning good results.

Here are some examples:

• Search engines. Current general search engines (AltaVista, Google, Inktomi, etc.) index
a corpus of hundreds of millions of Web pages by maintaining a large collection of
inverted files distributed in various ways among multiple machines. Often, when a
query is received, a central controller must aggregate data from several machines. The
goal of the controller is to optimize the user experience, which depends on two factors.
The first is the quantity of information received; we will start with the simplifying
assumption that this depends only on the number of machines who have responded to
the controller’s query. (Practically, ignoring some machines is equivalent to a reduction
in the size of the corpus.) The second is the amount of time the user has to wait for
the response. We wish to design an algorithm for determining an optimal plan for the
controller. Of course in reality the situation is more complex: different machines may
be experiencing different loads, or some machines may be down altogether, without the
controller’s knowledge.

• Metasearch engines and peer-to-peer (P2P) search. The situation here is similar except
that the controller now waits for results from multiple search engines. In the P2P
scenario the number of sources may not even be known a priori.

• Portal pages. Personalized portal pages (Excite, Lycos, Yahoo) integrate all sort of per-
sonalized information, each provided by a different server: stock quotes, news, weather,
horoscopes, movie schedules, etc. There is a conflict here between returning the page
quickly and having the most updated information from each of these servers. The ag-
gregator may decide to return out-of-date information and/or not fill certain fields in
the interest of responding in a timely fashion.

• Page construction from cached components. Companies such as Akamai provide network
caching services whereby certain objects such as images are cached on multiple servers
located all over the world. When a user requests a page including an “Akamaized”
object, the object is returned from the most appropriate cache. In more advanced im-
plementations most of the page is stored on an Akamai server in the form of a collection
of objects and only minimal requests are made to a central server. The issue here is that
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the objects have an expiration date. In some situations the cache server must decide
whether to return a page containing some expired objects, wait for updates, or time out
the user request altogether.

Again, the general problem situation uniting the above scenarios is that an aggregator
simultaneously makes requests to n sources and at some time t decides to return a response in
order to obtain a reward Rk(t) that depends on the number k of sources that have responded
by time t. The goal of the aggregator is to maximize the expected reward obtained. In full
generality, this problem is quite complex; the form of the solution depends on the reward
functions, the rules governing machine responses, and the type of solution desired (approx-
imation or exact). For this paper, we have focused on several specific goals that guide us.
First, in order to provide a mathematical framework for the problem, we initially focus on a
natural probabilistic model, where the return time for each of the n sources is independent
and identically distributed (i.i.d.) according to a cumulative distribution function F known
to the controller.

Second, we are interested in situations where we can develop plans that are optimal for
the aggregator. The problem of designing fast, on-line general approximation algorithms for
this scenario is clearly interesting and a worthy problem for future work. Our hope, however,
is to find a broad class of instances where computing an optimal solution is possible.

Third, we are interested in situations where we can develop a plan for the aggregator that
is simple. While simplicity is a relative notion, we may describe it formally here as follows.
The plan can be thought of as a series of binary functions Pk(t), where Pk(t) is 1 if the
aggregator should return with k responses at time t and 0 otherwise. One natural measure
of the complexity of Pk(t) is the number of transition points, where t0 is a transition point if
for every ε > 0 there exist points x, y in the neighborhood [t0 − ε, t0 + ε] such that Pk(x) and
Pk(y) take on different values. Intuitively, the optimal plan changes around t0. A priori there
is no reason that the number of transition points must be finite (indeed, it is not clear that
the set of transition points needs to be countable). A simple plan will have few transition
points. In this work we find situations where each Pk(t) has a single transition point.

Our work relies on using statistical properties from the literature of systems reliability:
increasing failure rate and decreasing failure rate. We provide a weak example of our results
here, although the statement may be more meaningful only after all the definitions and frame-
work have been established. Suppose each reward function Rk(t) equals rk(1 − Z(t)), where
the constants rk > 0 represent the undiscounted rewards and 1 − Z(t) is a discount factor
related to the time waited. Also, let the function Z(t) be a cumulative distribution function
for some probability distribution. Note that Z(t) is not actually used as the distribution of a
random variable; this is just a convenient way to specify the shape of the function. Indeed,
one of our important contributions is to recognize that interesting results arise in this setting
by considering the shape of the reward function as a probability distribution. As an exam-
ple, a natural special case that is often used in Markov decision processes [4, 13] is where
the reward has exponential decay; that is, Rk(t) = rke−γt for some fixed γ. Recall that F is
the cumulative distribution function of the return time of each source. Let F0 represent the
cumulative distribution for the first time of any of the n sources. One result we obtain is the
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following:

Theorem: If F has increasing failure rate, Z has decreasing failure rate, and the sum of
the failure rates for F0 and Z is decreasing, then in the optimal plan for each k there is a
single transition point. Specifically, on receiving the kth response the aggregator should either
return immediately or wait for the next response. Similarly, if F has decreasing failure rate,
Z has increasing failure rate, and the sum of the failure rates for F0 and Z is increasing, then
in the optimal plan for each k there is a single transition point. With k responses, the receiver
should wait up to some time tk for another response before giving up.

Hence, for extremely large classes of return distributions and reward functions, the optimal
plan is incredibly simple. Using this fact, one can generally calculate the optimal plan numer-
ically if given the return distribution in an appropriate form. Another possible application
of these results is to allow an aggregator to learn a near-optimal plan effectively even if the
underlying distributions are unknown. The aggregator uses a learning algorithm to discover
the best plan; it can narrow the space of plans to consider by focusing only on plans with a
single transition point if the aggregator knows or suspects the conditions of the theorem are
satisfied.

We also provide several additional theorems. For example, we provide a result that has
fewer restrictions on the distributions, but instead restricts the behavior of the values rk. We
also examine the cases where different sources may have different values or different response
times. In these settings, the optimal plan also has a simple form, with one transition point
per subset of sources. Finally, we present an argument showing that making another natural
weaker assumption on the distributions of the response times is insufficent for our results.

1.1 Previous work

The concepts of increasing failure rate and decreasing failure rate are utilized primarily in
the literature of systems reliability, where they are used to describe the lifetime of system
components [12, 15, 16, 19]. The lifetime distribution may affect the proper strategy for
scheduling maintenance. In this sense, the idea that these distributions can yield algorithmic
implications has been known for some time [16].

The problem we examine here fits naturally into the scheme of Markov decision processes
[4, 13]; there is an underlying Markov reward process, and one wants to maximize the reward.
Indeed, it specifically fits into the framework of optimal stopping theory, where one wishes to
find the optimal time to stop a process in order to maximize a reward [6, 8]. For example, the
well-known secretary problem, where an employer interviews n secretaries and must decide
after each interview whether or not to hire that person on the spot, exemplifies the problem
framework of optimal stopping theory. The reward function for the secretary problem depends
on the variation; the employer may wish to maximize the probability of finding the best
secretary, or optimize for some other criterion (see, e.g., [1]). We note that in order to keep
this work self-contained, we eschew using notation or language specific to optimal stopping
theory.

What is novel in our work is the connection between reliability theory and this natural
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stopping problem, and in particular the interesting relationships between the return time
distribution and the shape of the reward discounting function. There is very little other
prior work that builds on this natural connection. Most recently, properties of increasing
failure rate distributions were used by Boyan and Mitzenmacher in the context of another
scheduling and planning problem, crossing town by bus [5]. This paper extended previous
work by Datar and Ranade [7], which considered the question under the assumption that
the arrival distribution for buses to a stop were exponential distributions. The main result of
Boyan and Mitzenmacher is to show that the weaker assumption that bus arrival distributions
have increasing failure rate results in simple plans for the optimal solution, which can then
be calculated using numerical methods.

After completing this work, we found additional prior work from the statistical community
that utilized the connection between stopping times for aggregation problems and reliability
properties of distributions [17, 18, 9].1 In all of this prior work, however, the reward function
used in the analysis was Rk(t) = rk − ct for some constant c or in some cases Rk(t) = rk − c(t)
for a convex c(t). That is, their discount was additive over time, while ours is multiplicative.2

While the flavor of the work is similar, all of our results are new. Moreover, some of our
generalizations appear to have no parallel in this previous work. While it is arguable which
model is more accurate, we believe that each may be appropriate in different situations.

Our work also has some of the flavor of problems for on-line algorithms in the face of
uncertainty, including machine breakdown [2, 3, 10, 11]. Our aggregator must decide when to
stop in the face of uncertain response time. Again, our goals here are different than in this
previous work, as we focus on what probabilistic assumptions are necessary for the optimal
plan to have a simple, calculable form.

2 Definitions and Basic Lemmas

We begin by providing standard probabilistic definitions and some simple lemmas. Consider a
cumulative probability distribution F (t) with density function f(t) = F ′(t). For convenience
we will generally assume that F and f are non-zero, continuous, and differentiable over all
positive real numbers, although our results hold more generally.

We consider the case where F has increasing failure rate.3 At an intuitive level, an event
has increasing failure rate if the longer you’ve waited for it, the more likely it’s just about to
happen. More formally, we have the following.

Definition 1 For a nonnegative random variable X with cumulative distribution function
(cdf) F (t), we define the corresponding survival function to be F̄ (t) = 1 − F (t). The failure

1We suggest that this prior work was fairly obscure, and it only arose after a lengthy Web search.
2It might seem one could move from multiplicative to additive discounts by placing an appropriate loga-

rithm, but because we seek to maximize the expected reward, this does not appear to be the case.
3Here we follow the perhaps unfortunate but apparently standard practice and use “increasing” to mean

“non-decreasing” and “decreasing” to mean “non-increasing” throughout. So a constant function is both
increasing and decreasing, and having increasing failure rate really means the failure rate is non-decreasing,
even though IFR is the standard term.
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rate of X is defined as r(t) = f(t)/F̄ (t).

Definition 2 A nonnegative random variable X with function (cdf) F (t) is said to have
increasing failure rate (or be IFR) if the failure rate r(t) is increasing. Equivalently, X is IFR
if log F̄ (t) is concave on the support of F̄ . That is, F̄ (t) is logconcave.

We may say that F is IFR instead of X is IFR where the meaning is clear. Also note the
function r(t) satisfies

r(t) =
f(t)

F̄ (t)
= lim

∆t→0

Pr(t < X ≤ t + ∆t | X > t)

∆t
;

that is, r(t) represent the probability that the event corresponding to X is about to occur,
given that it has not occurred already. This explains our previously given intuition. Exponen-
tial, normal, and uniform distributions are for example all IFR, as are gamma distributions
corresponding to the sum of exponential distributions.

Similarly, we have the following:

Definition 3 A nonnegative random variable X with function (cdf) F (t) is said to have
decreasing failure rate (or be DFR) if the failure rate r(t) is decreasing. Equivalently, X is
DFR if log F̄ (t) is convex on the support of F̄ , or F̄ (t) is logconvex.

Exponential distributions are also DFR; since the failure rate for exponential distribu-
tions is constant (another way of saying the distribution is memoryless), they are both IFR
and DFR. Another class of interesting distributions that fall into the DFR class is certain
power-law distributions, for example distributions where F̄ (t) = 1

(1+x)α for α > 0. Power-law
distributions have appeared in several contexts in recent work, as they model phenomena with
heavy tails. A heavy-tailed response time distribution may make sense in situations where
there is some probability a machine is temporarily down, in which case there is a non-trivial
possibility that it may be a long time before a response is heard.

Before proceeding, we state a few short lemmas about IFR and DFR distributions that
prove useful in the sequel.

Lemma 1 If X1, X2, . . . , Xn are IFR (resp. DFR) random variables, then min(X1, X2, . . . , Xn)
is IFR (resp. DFR).

Proof: If rj(t) is the failure rate for Xj , then
∑n

j=1 rj(t) is the failure rate for min(X1, X2, . . . , Xn).
The result follows. ✷

Lemma 2 If F is IFR (resp. DFR), then F̄ (t + x)/F̄ (t) is decreasing (resp. increasing) in
t for a fixed x ≥ 0.
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Proof: We prove for the case where F is IFR; the other case is entirely similar. The derivative
of F̄ (t + x)/F̄ (t) with respect to t is

F̄ (t + x)f(t) − F̄ (t)f(t + x)

(F̄ (t))2.

If F is IFR, then
f(t + x)

F̄ (t + x)
≥ f(t)

F̄ (t)
,

from which we may conclude the derivative is non-positive and hence the theorem holds. ✷

Finally, we recall that we are interested in the complexity of the plan, where the complexity
is measured in terms of transition points.

Definition 4 A plan has a transition point at time t with k responding sources if for every
ε > 0 there exist times x, y in the neighborhood [t−ε, t+ ε] such that with k responding sources
the plan returns at time x but waits at time y.

3 Simple Plans for Classes of Distributions and Re-

wards

In this section, we prove our result in the case where the cumulative distribution function F
for the response time from each individual source is IFR. For convenience, from here on we
denote by Fj the cumulative distribution function for the next response given that j sources
have already responded. Of course f and fj are the corresponding density functions. For
notational convenience we may think of F̄n as being 1 everywhere; that is, the corresponding
random value is infinite.

Lemma 3 If F is IFR (respectively DFR), then Fj is also IFR (respectively DFR).

Proof: This follows immediately from Lemma 1, since fj(t)/F̄j(t) = (n− j)f(t)/F̄ (t). ✷

Let Rj(t) = rjZ̄(t), where r0 ≤ r1 ≤ r2 . . . ≤ rn are constants and Z̄(t) is the survival
function of a probability distribution. Recall that the rj can be considered the undiscounted
reward for returning when j sources have been heard from, and Z̄(t) is a multiplicative discount
accounting for time. We emphasize again that because Z̄(t) is a survival function does not
imply the reward Rj(t) is random; we are merely specifying the shape of the reward function in
a convenient manner. For convenience we assume the support of all distributions is all positive
real numbers. Let z(t) be the corresponding density function for the cumulative distribution
function Z(t).

Finally, note that if F̄ (t) and Z̄(t) are survival functions, then so is their product F̄ (t)Z̄(t).
Abusing notation, we let F · Z be the cumulative distribution function associated with the
survival function F̄ (t)Z̄(t). The failure rate associated with the distribution Fj ·Z is the sum
fj(t)

F̄j(t)
+ z(t)

Z̄(t)
.
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Theorem 1 If F has increasing failure rate, Z has decreasing failure rate, and Fm · Z has
decreasing failure rate, then in the optimal plan for each number of responses j ≥ m− 1 there
is a single transition point. Moreover, on receiving the jth response the aggregator should
either return immediately or wait for the next response.

We have stated Theorem 1 in a general way, so that it may apply once some number of
responses have been obtained even if it does not apply for fewer responses. In particular, since
F̄n(t) is identically one, the theorem always holds for n − 1 responses if F is IFR and Z is
DFR.
Proof:

We begin by noting a useful fact. Since
fj(t)

F̄j(t)
= (n − j) f(t)

F̄ (t)
, F is IFR, Z is DFR, and the

failure rate associated with the distribution Fj ·Z is the sum fj(t)

F̄j(t)
+ z(t)

Z̄(t)
, we have that if Fj ·Z

is DFR, so is Fk · Z for all k ≥ j. This fact allows us to do a backwards induction.
Let Vj(t) be the expected payoff to the aggregator using the optimal strategy from time

t given that j sources have responded. Clearly Vn(t) = Rn(t); the optimal strategy when all
sources have been heard must be to return immediately. We show via a backward induction
from j = n down to m the following:

• At any time t, the optimal strategy having j responses is either to wait for the next
arrival, or to return immediately.

• The function Wj(t) = Vj(t)/Z̄(t) is increasing in t.

The above are both true for j = n. The first part of the induction will also go through for
j = m− 1, and hence the induction yields the theorem.

To begin, for any fixed t consider vt(u) to be the value obtained by the aggregator if,
starting at time t, it chooses the policy of waiting until time u ≥ t and then returning when
it has already heard from j sources. The optimal policy must be of this form (since the
distribution is known ahead of time, randomness cannot help the aggregator). Then

vt(u) =
∫ u

x=t
Vj+1(x)

fj(x)

F̄j(t)
dx +

F̄j(u)

F̄j(t)
Rj(u).

The first term on the right hand side corresponds to the contribution should an arrival
happen before u, and the second term corresponds to the contribution if no arrival happens
before u.

Now

dvt

du
= Vj+1(u)

fj(u)

F̄j(t)
− fj(u)

F̄j(t)
Rj(u) − F̄j(u)

F̄j(t)
rjz(u)

=
fj(u)Z̄(u)[Wj+1(u) − rj] − rjF̄j(u)z(u)

F̄j(t)

We show that the numerator of the final right hand side above is non-positive for all u in
some interval t ≤ u ≤ u∗, and non-negative for all u ≥ u∗ (where u∗ may take on the value
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∞). It follows that the maximum value for v is achieved either when u = t or in the limit as
u goes to infinity. That is, the optimal strategy is either to return immediately or wait for
the next arrival.

Suppose u∗ is the infimum of all values such that

fj(u
∗)Z̄(u∗)[Wj+1(u

∗) − rj ] − rjF̄j(u
∗)z(u∗) ≥ 0.

Equivalently, u∗ is the infimum of all values such that

fj(u
∗)

F̄j(u∗)
[Wj+1(u

∗) − rj] ≥ rj
z(u∗)

Z̄(u∗)
.

The left hand side above is increasing in u∗, as Fj is IFR, Wj+1(u
∗) ≥ rj+1 ≥ rj, and Wj+1 is

increasing by the inductive hypothesis. The right hand side is decreasing, as Z is DFR. Hence
for all u ≥ u∗,

fj(u)

F̄j(u)
[Wj+1(u) − rj ] ≥ rj

z(u)

Z̄(u)
,

or equivalently, for u ≥ u∗,

fj(u)Z̄(u)[Wj+1(u) − rj] − rjF̄j(u)z(u) ≥ 0.

Hence the derivative of dvt/du is non-negative over some interval u ≥ u∗ and non-positive for
u ≤ u∗, as was to be shown.

The above argument says that at any time t, the optimal strategy is either to return
immediately or wait for another response. Let tj be the infimum of all values of t such that it
is better to wait for the (j + 1)st source at time t. It must be the case that for every t > tj
the aggregator should wait for another response and for every t < tj the aggregator should
return immediately.

It follows that

Vj(t) = max

(
Rj(t),

∫ ∞

x=t
Vj+1(x)

fj(x)

F̄j(t)
dx

)
.

Equivalently,

Wj(t) = max

(
rj,
∫ ∞

x=t

Vj+1(x)

Z̄(t)

fj(x)

F̄j(t)
dx

)

= max

(
rj,
∫ ∞

x=0

Vj+1(t + x)

Z̄(t)

fj(t + x)

F̄j(t)
dx

)

= max

(
rj,
∫ ∞

x=0
Wj+1(t + x)

Z̄(t + x)

Z̄(t)

F̄j(t + x)

F̄j(t)

fj(t + x)

F̄j(t + x)
dx

)
.

Now the expression within the integral is increasing in t: Wj+1(t + x) is by the induction

hypothesis; Z̄(t+x)
Z̄(t)

F̄j(t+x)

F̄j(t)
is by Lemma 2 and the fact that Fj · Z is DFR; and

fj(t+x)

F̄j(t+x)
is since

Fj is IFR. It follows that the integral is increasing in t and hence so is Wj(t), completing the
induction. ✷
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3.1 Decreasing Failure Rate Return Times

Naturally, we ask whether the above result can be extended in the alternative case where
sources have a decreasing failure rate. Such a model is reasonable in this setting; it may be
that once we have not heard from a source, there is reason to believe it is busy or broken and
might not respond for some time. We prove a result similar to Theorem 1. We also provide
a second result that loosens the restrictions on F and Z, but requires additional restrictions
on the values rj.

Theorem 2 If F has decreasing failure rate, Z has increasing failure rate, and Fm · Z has
increasing failure rate, then in the optimal plan for each number of responses j ≥ m− 1 there
is a single transition point. Specifically, an aggregator with j responses should wait only until
some time tj for another response.

Proof:
The proof follows Theorem 1, with the directions “reversed.” The goal of the backwards

induction is now to show:

• With j sources, the optimal strategy is to wait only until some time tj for another
response.

• The function Wj(t) = Vj(t)/Z̄(t) is decreasing in t.

The above are both true for j = n (here tn = −∞). The first part of the induction will also
go through for j = m− 1, and hence the induction yields the theorem.

Similarly to Theorem 1, we have that if Fj ·Z is IFR, so is Fk ·Z for all k ≥ j under these
conditions.

Following Theorem 1, for any fixed t again let vt(u) be the value obtained by the aggregator
if, starting at time t, it chooses the policy of waiting until time u ≥ t and then returning. As
in Theorem 1 we find

dvt

du
=
fj(u)Z̄(u)[Wj+1(u) − rj ] − rjF̄j(u)z(u)

F̄j(t)

Suppose tj is the infimum of all values such that dvt

du
≤ 0. Equivalently,

fj(tj)

F̄j(tj)
[Wj+1(tj) − rj ] ≥ rj

z(tj)

Z̄(tj)
.

The left hand side above is decreasing in tj , as Fj is DFR, Wj+1 ≥ rj+1 ≥ rj , and Wj+1 is
decreasing by the inductive hypothesis. The right hand side is increasing, as Z is IFR. Hence
for all u ≥ tj,

fj(u)Z̄(u)[Wj+1(u) − rj] − rjF̄j(u)z(u) ≥ 0.

Hence the derivative of dvt/du is non-negative over some interval u ≥ tj and non-positive
for u ≤ tj . Hence vt first increases to tj and then decreases, from which we conclude there
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is a point tj that the aggregator should wait until before returning. Further note that the
numerator of dvt/du is independent of t, and hence the value tj is in fact independent of t;
that is, the value tj completely summarizes the optimal plan for the aggregator when it has j
responses.

We now need to show that Wj(t) is decreasing up to tj. To determine the sign of the
derivative of Wj(t), we begin by considering the value of Wj(t+∆)−Wj(t), where t and t+∆
are less than tj ; indeed, we will think of ∆ > 0 as going to 0.

Wj(t + ∆) −Wj(t) =
∫ tj

x=t+∆

fj(x)Vj+1(x)

F̄j(t + ∆)Z̄(t + ∆)
dx−

∫ tj

x=t

fj(x)Vj+1(x)

F̄j(t)Z̄(t)
dx

+ Rj(tj)F̄j(tj)

(
1

F̄j(t + ∆)Z̄(t + ∆)
− 1

F̄j(t)Z̄(t)

)
.

Let us examine the first two terms on the right hand side. Note

∫ tj

x=t

fj(x)Vj+1(x)

F̄j(t)Z̄(t)
dx =

∫ tj−t

x=0
Wj+1(x + t)

fj(x + t)

F̄j(x + t)

F̄j(x + t)Z̄(x + t)

F̄j(t)Z̄(t)
.

The product inside the integral is decreasing in t for a fixed x by Lemma 2 and our assumptions
on Fj and Z. Hence

∫ tj

x=t+∆

fj(x)Vj+1(x)

F̄j(t+∆)Z̄(t+∆)
dx−

∫ tj

x=t

fj(x)Vj+1(x)

F̄j(t)Z̄(t)
dx =

∫ tj−t−∆

x=0

fj(x+t +∆)Wj+1(x+ t+∆)Z̄(x+t+∆)

F̄j(t + ∆)Z̄(t + ∆)
dx

−
∫ tj−t

x=0

fj(x + t)Wj+1(x + t)Z̄(x + t)

F̄j(t)Z̄(t)
dx

≤ −
∫ tj−t

x=tj−t−∆

fj(x + t)Wj+1(x + t)Z̄(x + t)

F̄j(t)Z̄(t)
dx

= −
∫ tj

x=tj−∆

fj(x)Wj+1(x)Z̄(x)

F̄j(t)Z̄(t)
dx.

Now consider (Wj(t + ∆) −Wj(t))/∆ in the limit as ∆ goes to 0 (from the right).

Wj(t + ∆) −Wj(t)

∆
≤ −

∫ tj

x=tj−∆

fj(x)Wj+1(x)Z̄(x)

F̄j(t)Z̄(t)∆
dx +

1

∆

(
Rj(tj)F̄j(tj)

F̄j(t + ∆)Z̄(t + ∆)
− Rj(tj)F̄j(tj)

F̄j(t)Z̄(t)

)
.

Taking the limit gives

dWj(t)

dt
≤ −fj(tj)Wj+1(tj)Z̄(tj)

F̄j(t)Z̄(t)
+

(Rj(tj)F̄j(tj))(fj(t)Z̄(t) + F̄j(t)z(t))(
F̄j(t)Z̄(t)

)2 ,

where we have replaced the limiting terms by the appropriate derivatives. Recall that

fj(tj)Wj+1(tj)Z̄(tj) = rjfj(tj)Z̄(tj) + rjz(tj)F̄j(tj),
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and Rj(t) = rjZ̄(t), so simplying the above yields

dWj(t)

dt
≤ rjF̄j(tj)Z̄(tj)

F̄j(t)Z̄(t)
·
(
fj(t)

F̄j(t)
+

z(t)

Z̄(t)
− fj(tj)

F̄j(tj)
− z(tj)

Z̄(tj)

)
.

Hence
dWj(t)

dt
is non-positive if

fj(tj)

F̄j(tj)
+

z(tj)

Z̄(tj)
− fj(t)

F̄j(t)
− z(t)

Z̄(t)
≥ 0.

Since the failure rate of Fj ·Z is increasing, the above holds, and the induction goes through.
✷

If the reward function has exponential decay, then Theorem 1 and Theorem 2 both hold
for any number of responses if the return distribution times are exponential. We therefore
obtain the following corollary:

Corollary 1 If Z(t) and F (t) are given by exponential distributions, then the optimal strategy
for the aggregator is to always wait for k sources to respond for some k.

Proof: In this case, Theorem 1 says that for each number of responding sources we return
immediately or wait forever, while Theorem 2 says that for each number of responding sources
we wait until some fixed time and return. Both can only hold if for j responding sources we
either always return immediately or always wait for another source, independent of the time
passed. Hence the aggregator always waits for a fixed number of sources to respond. ✷

This corollary can also be proved directly using the algebraic properties of the exponential
distribution, but the above proof based on first principles is appealing.

Our second theorem for this case (inspired by [18]) places restrictions on the values rk. In
stopping time nomenclature, it is an example of an infinitesimal stopping rule [14], where the
stopping rule is easily expressed in terms of the input parameters.

Theorem 3 If F has decreasing failure rate and Z has increasing failure rate, and moreover
rj+1

rj
is decreasing in j for j ≥ k, then in the optimal plan there is a time tj for each j ≥ k so

that an aggregator with j responses should wait only until time tj for another response. Here

tj is the first time such that fj(tj )

F̄j(tj)

(
rj+1

rj
− 1

)
≤ z(tj)

Z̄(tj )
, or tj = ∞ if no such time exists.

Proof: Again the proof follows a reverse induction. Recall

dvt

du
=
fj(u)Z̄(u)[Wj+1(u) − rj] − rjF̄j(u)z(u)

F̄j(t)
.

This is positive whenever

fj(u)

F̄j(u)

(
Wj+1(u)

rj

− 1

)
≥ z(u)

Z̄(u)
.

11



Let tj be the first time where

fj(tj)

F̄j(tj)

(
rj+1

rj

− 1

)
≥ z(tj)

Z̄(tj)
.

(If no such time exists, we take tj = ∞.) We claim that the optimal plan is to wait until time
tj and then stop. Since Wj+1(u) ≥ rj+1, Fj has decreasing failure rate, and Z has increasing
failure rate, at all times u ≤ tj we have that dvt

du
is positive. Hence we should always wait until

time tj .
We now claim that tj+1 ≤ tj. This holds trivially when j = n − 1, and holds for other

values of j from the definition as
rj+1

rj
is decreasing in j and

fj(x)

F̄j(x)
≥ fj+1(x)

F̄j+1(x)
. Since tj+1 ≤ tj ,

by a reverse induction Wj+1(tj) = rj+1. This implies the aggregator need not wait past time
tj for an optimal schedule. ✷

4 Related Cases

Up to this point, we have considered the case where all sources were indistinguishable, both in
terms of the distribution of their response time and the value of their response. It is natural
to ask if we can generalize to less stringent cases. We show that Theorems 1 and 2 can be
generalized naturally if either the distributions are different or the value corresponding to
individual sources are different, as we show below. In these cases, however, there may be
a transition point for each possible subset of sources, so the size to represent the optimal
plan may grow exponentially in the number of sources n. This may still be suitable in some
situations, where the number of sources is small (in the tens) but there may be some variability
in either response time or the value of answers. For convenience, we state our results as
variations of Theorem 1 only.

To begin, consider the case where for a subset S of sources there is an associated value
RS(t) = rSZ̄(t). For example, each source e could have its own corresponding value re, and
the value rS would be the sum of the re for the set. Of course the rS should be increasing, in
the sense that if S ⊂ T then rS ≤ rT . All sources are governed by the same distribution for
the response time.

Theorem 4 Consider the setting where RS(t) = rSZ̄(t), the rS are increasing, F has increas-
ing failure rate, Z has decreasing failure rate, and Fm · Z has decreasing failure rate. In the
optimal plan for each set of respondents S with |S| ≥ m− 1 there is a single transition point.
On receiving a response the aggregator should either return immediately or wait for the next
response.

Proof: Let VS(t) be the expected payoff to the aggregator using the optimal strategy given
that at time t all the sources in S have been heard from. We use a similar backward induction
as in Theorem 1. Consider any set S of sources of size j < n. Let T be the set of all sets of
the form {S} ∪ e for some e /∈ S, and VT (t) =

∑
T∈T VT (t)/|T |. Then, following Theorem 1,
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consider vt(u) to be the value obtained by the aggregator if, starting at time t, it chooses the
policy of waiting until time u ≥ t for some fixed set S. We have

vt(u) =
∫ u

x=t
VT (x)

fj(x)

F̄j(t)
dx +

F̄j(u)

F̄j(t)
RS(u).

The proof now follows Theorem 1, with VT (x) and WT (x) replacing Vj+1(x) and Wj+1(x)
as appropriate. The point is that if each WT (t) is decreasing, so is their average. ✷

In the second case, the return value function Rj(t) = rjZ̄(t) depends only on the number
of sources, but the return time distribution Fe for each source e may vary, under the constraint
that all distributions are IFR. We let FS be the distribution of the time until the first response
for all sources excluding those in S, and similarly define fS appropriately.

Theorem 5 Consider the setting where each return distribution Fe has increasing failure
rate, Z has decreasing failure rate, and FS · Z has decreasing failure rate for some subset S
of the sources. In the optimal plan for each set of respondents T satisfying S ⊆ T there is a
single transition point. Moreover, on receiving a response the aggregator should either return
immediately or wait for the next response.

Proof: Following Theorem 1, consider vt(u) to be the value obtained by the aggregator if,
starting at time t, it chooses the policy of waiting until time u ≥ t for some fixed set Q. We
have

vt(u) =
∫ u

x=t
Vj+1(x)

fQ(x)

F̄Q(t)
dx +

F̄Q(u)

F̄Q(t)
Rj(u).

There is now a backwards induction on supersets of S that goes through exactly as in Theo-
rem 1. ✷

We do not have a proof for the case when both the response times and the values may vary
across sources. The problem in this case is that as time changes which source is most likely
to return may change, and this may then affect the value of waiting for the next response.
Hence it is not clear if in fact both response times and response values vary that the optimal
plan continues to have such a nice form; a stronger condition may be required.

The above theorems may be more useful in settings where we have many sources but a
small number of types of sources. For example, suppose we have a small set of extremely
valuable sources and a larger set of less valuable sources, where all sources have the same
response time distribution. If the value to the aggregator is just a function of the number
of extremely valuable and less valuable sources that have been heard from, then we may use
Theorem 4. In this case, the optimal plan will have one transition point associated with each
pair (x, y), where x is the number of extremely valuable sources and y is the number of less
valuable sources that have responded. In this case the size of the optimal plan in no longer
exponential in the number of sources.
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5 A Counterexample for a Weaker Distribution Prop-

erty

For completeness, we provide a counterexample to show that some strong condition is neces-
sary for our theorems to apply. In all of our theorems, the case where we have heard from
n − 1 sources is the easy first step of our backward induction. In Theorem 1, for example,
just the fact that F has increasing failure rate and Z has decreasing failure rate is sufficient
to guarantee that there is only one transition point when n− 1 sources have responded. Our
counterexample shows that a weaker condition on the response times than Theorem 1 fails to
guarantee that optimal plans have only a single transition point even with n− 1 responses.

The mean residual life of X at time t is defined as mX(t) = E[X − t | X > t]. We define
mX(t) to be 0 where F̄ (t) = 0. The random variable X is said to have decreasing mean
residual life or be DMRL if mX(t) is decreasing. It is easy to show that if X is IFR then it is
DMRL, but the reverse need not hold. We here show that if the response time distributions
for sources have decreasing mean residual life, the optimal plan may have more than one
transition point for each number of sources heard from.

For our counterexample, we use the fact that the uniform distribution over the range
[0, 2] ∪ [4, 12] is DMRL. Call this distribution D. We consider a simple problem with two
sources with response time distribution D. The reward is governed by an exponential decay
over time. With no responses, the reward is always 0. With one response, at time t the reward
is e−t. With two responses, at time t the reward is 10e−t. The idea of this counterexample
is that by making the reward large for receiving two response, we encourage the aggregator
to wait if it has received a single response up to the gap where responses will not arrive. At
the same time, the gap dissuades an aggregator from waiting if one response comes in early
enough.

The following four facts are easy to verify using computation and a case analysis, as shown
in the Appendix.

• At time 4 and higher, if the aggregator has one response, it should always wait for a
second.

• At time 2, if the aggregator has one response, it should return rather than wait at least
two time units for the next response.

• For times in the range [0.5, 2], if the aggregator receives a first response, the expectation
for the aggregator is larger if it waits until time 2 for the second response and then
returns at time 2 if it fails to arrive.

• For times in the range [0, 0.4], if the aggregator receives a first response, the expectation
for the aggregator is larger if it returns immediately rather than waits until time 2 for
a second response.

More specifically, there are in fact two transition points, one at about 0.406 and one at 2.
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Although the support of the response distribution is not all positive numbers in our ex-
ample, we could easily modify the distribution to have this property, keeping the density in
portions outside the intervals suitably small. Also, we could use distributions consisting of
more disjoint intervals to make the optimal schedule even more complex.

6 Conclusion

We have introduced the natural problem of aggregation, which arises in Web search engines
as well as other distributed systems. The aggregation paradigm appears quite general; we
believe it will prove a foundational framework for several applications. Our focus in this work
has been to determine appropriate probabilistic assumptions under which the optimal plan
for the aggregator has a simple form.

Our work suggests many further questions for future study; we list some possibilities. It
would be interesting to know how complex an optimal solution can be, or if there is a natural
way to tie the complexity of the response distributions to the complexity of the optimal
plan. Proving the existence of and designing algorithms for finding approximately optimal
plans with low complexity in terms of the number of transition points would also be useful.
Designing on-line systems that deal properly with widely heterogeneous sources, either exactly
or with approximate algorithms, may be possible; the full plan would not need to be computed
in advance, but proper responses might be calculated on the fly. Extending results to cases
where response time distributions may be correlated in non-trivial ways might be important
for practical applications.
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Appendix: A Counterexample

For our counterexample, we use the fact that the uniform distribution over the range [0, 2] ∪
[4, 12] is DMRL. Call this distribution D. We consider a simple problem with two sources
with response time distribution D. The reward is governed by an exponential decay over time.
With no responses, the reward is always 0. With one response, at time t the reward is e−t.
With two responses, at time t the reward is 10e−t. The idea of this counterexample is that by
making the reward large for receiving two response, we encourage the aggregator to wait up
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to the gap where responses will not arrive if it has received a single response. The gap will
dissuade an aggregator from waiting, however, if one response comes in early enough. There
are two transition points, one at about 0.406 and one at 2. We simply show that there are at
least two transition points.

First, we show that at time 4 and higher, if the aggregator has one response, it should
always wait for a second. In the language of Theorem 1, for t ≥ 4 the aggregator should wait
if

fj(t)

F̄j(t)
[Wj+1(t) − rj ] ≥

z(t)

Z̄(t)
.

In this case
fj(t)

F̄j(t)
≥ 1

8
, Wj+1(t) − rj ≥ 9, and z(t)

Z̄(t)
= 1. Hence the aggregator should wait.

Second, at time 2, if the aggregator has one response, it should return rather than waiting
at least two time units for the next response. The reward by returning is e−2. If the aggregator
waits, from the above paragraph it should wait until the second arrival. Comparing the rewards
we find

e−2 ≥
∫ 12

t=4

10

8
e−tdt.

Third, consider the case where the aggregator has one response at a time u in the range
[0, 2]. We compare rewards if the adversary waits until time 2 and if it returns immediately.
If it returns immediately, the reward is e−u. If it waits, the reward is

(∫ 2

t=u

10

10 − u
e−tdt

)
+

8

10 − u
e−2.

Graphing the two results numerically shows that it is better to wait for times in the range
[0.407, 2] but return for times in the range [0.405, 2].
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