Making Processes

 Topics
* Process creation from the user level:
» Fork, execvp, wait, waitpid, pipe

« Learning Objectives:
« Explain how processes are created

« Create new processes, synchronize with them, and
communicate exit codes back to the forking process.

« Start building a simple shell.

10/15/15 CS61 Fall 2015



Where do Processes Come From?

* There are two models of process creation:
« Copy an existing process (UNIX fork/exec model).

« Single system call to create a new process (Windows
model).

* In UNIX-like systems we use the fork/exec model.

10/15/15 CS61 Fall 2015



Fork

« System call that copies the calling process, creating a
second process that is identical (in all but one regard)
to the process that called fork

« We refer to the calling process as the parent and the
new process as the child.

* On return from successful fork
« Parent: return value is the pid of the child process.
* Child: return value is 0.

 |fthe fork fails:

* No child process created.
« Parent gets return value of -1 (and errno is set).

10/15/15 CS61 Fall 2015 3



Programming with fork

#include <unistd.h>
pid t ret pid;

ret_pid = fork(); é/

switch (ret_pid){
case O:
/* 1 am the child. */

break;
case -1:

[* Something bad happened. */
break;

default:
/~k
* | am the parent and my child’s

* pid is ret_pid.
*/
break;

10/15/15 CS61 Fall 2015



But what good are two identical processes?

So fork let us create a new process, but it's identical to the original. That
might not be very handy.

Enter exec (and friends): The exec family of functions replaces the
current process image with a new process image.

exec is the original/traditional API
execve is the modern day (more efficient) implementation.

There are_a pile of functions, all of which ultimately invoke execve ; we will
focus orf.execvp (which is recommended for Assignment 4).

If execvp returns, then it was unsuccessful and will return -1 and set
errno .

If successful, execvp does not return, because it is off and running as a
new process.
Arguments:

file: Name of a file to be executed

args: Null-terminated argument vector; the first entry of which is (by convention) the file
name associated with the file being executed.

10/15/15 CS61 Fall 2015 5



Programming with Exec

#include <unistd.h>
#include <errno.h>
#include <stdio.h>
pid_t ret_pid;

S

ret_pid = fork();
switch (ret_pid){

|

case O:
/* I am the child. */
if (execvp(path, argv) == -1)
printf(“Something bad happened: %s\n”,
strerror(errno));
break;
case -1:
/* Something bad happened. */
break;
default:
/*
* | am the parent and my child’s
* pid is ret_pid.
*/
break;
}
10/15/15

CS61 Fall 2015



Coordinating with your child

« Sometimes it is useful for a parent to wait until a
specific child, all children, or any child exits.

pid_t wait (int *stat_loc)
pid_t waitpid(pid_t pid, int *stat_loc, int options)

e wait :suspends execution of the parent until some
child of the parent terminates or the parent receives a
signal.

« Return value is the pid of the terminating process
- stat loc s filled in with a status indicating how/why the
child terminated.

o waltpid : suspends until a particular child
terminates.

10/15/15 CS61 Fall 2015 7



Programming with Fork, Exec, Wait

#include <sys/wait.h>
#include <unistd.h>
#include <errno.h>
#include <stdio.h>
pid_t ret_pid;

ret pid = fork();
switch (ret_pid){
case 0:

case -1:

default:

10/15/15

/* I am the child. */
if (execvp(path, argv) == -1)
printf(“Something bad happened: %s\n”,
strerror(errno));
break;

/* Something bad happened. */
break;

/*
* | am the parent and my child’'s
* pid is ret_pid.
*/
if (waitpid(ret_pid, &exit_status, 0) !'=ret_pid)
printf (“Sardething bad happened!\n”);

break;

CS61 Fall 2015



Communicating with child processes

You've all used the | character to create pipes on the command
line in the shell (I hope).

What exactly does the pipe character do?

The effect:
» When you type:

% foo | bar
« The stdout stream of foo is connected to the stdin stream of bar.

You’ve probably used the file pointers, stderr , stdout , stdin
in fprintf and fscanf

STDIN_FILENO/STDOUT_FILENO(and STDERR_FILENO) are
the corresponding file descriptors.

They are opened on behalf of every process.
By convention, stdin comes from the console
By convention, stdout goes to the display

Allowing two proceses to interact as shown above requires that
we connect foo’s stdout to bar’s stdin

10/15/15 CS61 Fall 2015 9



The pipe system call

o pipe(int filedes|[2]) creates a pair of file
descriptors and places them in the array
referenced by filedes.

- filedes[0] is for reading S/E\C% j7§\
 filedes[1] is for writing

* When a parent forks children, the parent and
child share file descriptors.

By combining, fork , exec, and pipe , parents can
communicate with children and/or set up pipelines
between children.

10/15/15 CS61 Fall 2015

10



The dup2 system call

o dup2(int filedes, int filedes2)

 duplicates the first file descriptor (filedes) into the second file
descriptor (filedes2 ).

« After the call, both file descriptors refer to the same object,
so reading from/writing to one descriptor changes the file
position in both descriptors.

« If filedes2 already refers to an open object, that object is

XY\ B0

10/15/15 CS61 Fall 2015 11



Creating a Pipeline (@/Fbar)

Note: Terrible error handling to save space!

pid_t childl, child2;
int pipedes|[2], status;

assert (pipe(pipedes) == 0); /* Create the pipe. */

child1 = fork();

if (childl ==0) {
* child */
close(pipedes[0]); /* Close read end */

y dup2(pipedes|[1], STDOUT_FILENO); /* Make stdout the same as the pipe write fd
‘execvp(“foo”, argv); ~/* Assume argp is set*/

} e — e

[* only parent gets here */
child2 = fork();
if (child2 == 0) {
* child */
close (pipedes|[1]); < * Close writing end */
dup2(pipedes|[0], STDIN_FILENO); /* Make stdin the sam e as the pipe read fd */
execvp(“bar”, argv);

}

[* Parent once again */

close (pipedes[0]); /* Close pipe fDs in parent. */

close (pipedes|[1]);

waitpid(child2, &status, 0); /* Wait for second proc ess to complete. */

10/15/15 CS61 Fall 2015 12



Creating a Pipeline (foo | bar)
Note: Terrible error handling to save space!

pid_t childl, child2;
int pipedes|[2], status; —_

assert (pipe(pipedes) == 0);
child1 = fork(); ’P
if (child1 == 0) {

* child */

close(pipedes[0]);
dup2(pipedes|[1], STDOUT_FILENO);

execvp(“foo”, argv); =T 12183
} =T gu‘{
[* only parent gets here */ =T &
child2 = fork();
if (child2 ==0) {

* child */

close (pipedes[1]);
dup2(pipedes[0], STDIN_FILENO);
execvp(“bar”, argv);

}

[* Parent once again */

close (pipedes[0]);

close (pipedes|[1]); ﬁ
waitpid(child2, &status, 0); j— ——

10/15/15 CS61 Fall 2015




Wrapping Up

On most UNIX-like systems today, we use
fork/exec to create new processes.

wait and waitpid allow parents and children to
synchronize.

 The dup2 and pipe calls provide for communication
between parents and children.

* Next, we'll learn about signals, another mechanism
used to coordinate processes.

10/15/15 CS61 Fall 2015 14



