
10/15/15 CS61 Fall 2015 11

Making Processes

• Topics

• Process creation from the user level:

• Fork, execvp, wait, waitpid, pipe

• Learning Objectives:

• Explain how processes are created

• Create new processes, synchronize with them, and

communicate exit codes back to the forking process.

• Start building a simple shell.

Where do Processes Come From?

• There are two models of process creation:

• Copy an existing process (UNIX fork/exec model).

• Single system call to create a new process (Windows

model).

• In UNIX-like systems we use the fork/exec model.

10/15/15 CS61 Fall 2015 2

Fork

• System call that copies the calling process, creating a

second process that is identical (in all but one regard)

to the process that called fork .

• We refer to the calling process as the parent and the

new process as the child.

• On return from successful fork :

• Parent: return value is the pid of the child process.

• Child: return value is 0.

• If the fork fails:

• No child process created.

• Parent gets return value of -1 (and errno is set).

10/15/15 CS61 Fall 2015 3

Programming with fork

#include <unistd.h>
pid_t ret_pid;

ret_pid = fork();
switch (ret_pid){

case 0:
/* I am the child. */
break;

case -1:
/* Something bad happened. */
break;

default:
/*

* I am the parent and my child’s
* pid is ret_pid.
*/

break;
}

10/15/15 CS61 Fall 2015 4

But what good are two identical processes?

• So fork let us create a new process, but it’s identical to the original. That
might not be very handy.

• Enter exec (and friends): The exec family of functions replaces the
current process image with a new process image.

• exec is the original/traditional API

• execve is the modern day (more efficient) implementation.

• There are a pile of functions, all of which ultimately invoke execve ; we will
focus on execvp (which is recommended for Assignment 4).

• If execvp returns, then it was unsuccessful and will return -1 and set
errno .

• If successful, execvp does not return, because it is off and running as a
new process.

• Arguments:
• file: Name of a file to be executed

• args: Null-terminated argument vector; the first entry of which is (by convention) the file
name associated with the file being executed.

10/15/15 CS61 Fall 2015 5

Programming with Exec

10/15/15 CS61 Fall 2015 6

#include <unistd.h>
#include <errno.h>
#include <stdio.h>
pid_t ret_pid;

ret_pid = fork();
switch (ret_pid){

case 0:
/* I am the child. */
if (execvp(path, argv) == -1)

printf(“Something bad happened: %s\n”,
strerror(errno));

break;
case -1:

/* Something bad happened. */
break;

default:
/*

* I am the parent and my child’s
* pid is ret_pid.
*/

break;
}

Coordinating with your child

• Sometimes it is useful for a parent to wait until a

specific child, all children, or any child exits.
pid_t wait (int *stat_loc)

pid_t waitpid(pid_t pid, int *stat_loc, int options)

• wait : suspends execution of the parent until some

child of the parent terminates or the parent receives a

signal.

• Return value is the pid of the terminating process

• stat_loc is filled in with a status indicating how/why the

child terminated.

• waitpid : suspends until a particular child

terminates.

10/15/15 CS61 Fall 2015 7

Programming with Fork, Exec, Wait

10/15/15 CS61 Fall 2015 8

#include <sys/wait.h>
#include <unistd.h>
#include <errno.h>
#include <stdio.h>
pid_t ret_pid;

ret_pid = fork();
switch (ret_pid){

case 0:
/* I am the child. */
if (execvp(path, argv) == -1)

printf(“Something bad happened: %s\n”,
strerror(errno));

break;
case -1:

/* Something bad happened. */
break;

default:
/*

* I am the parent and my child’s
* pid is ret_pid.
*/

if (waitpid(ret_pid, &exit_status, 0) != ret_pid)
printf (“Something bad happened!\n”);

break;
}

Communicating with child processes

• You’ve all used the | character to create pipes on the command
line in the shell (I hope).

• What exactly does the pipe character do?

• The effect:
• When you type:

% foo | bar

• The stdout stream of foo is connected to the stdin stream of bar.

• You’ve probably used the file pointers, stderr , stdout , stdin
in fprintf and fscanf .

• STDIN_FILENO/STDOUT_FILENO(and STDERR_FILENO) are
the corresponding file descriptors.

• They are opened on behalf of every process.
• By convention, stdin comes from the console

• By convention, stdout goes to the display

• Allowing two proceses to interact as shown above requires that
we connect foo’s stdout to bar’s stdin

10/15/15 CS61 Fall 2015 9

The pipe system call

• pipe(int filedes[2]) creates a pair of file

descriptors and places them in the array

referenced by filedes.

• filedes[0] is for reading

• filedes[1] is for writing

• When a parent forks children, the parent and

child share file descriptors.

• By combining, fork , exec , and pipe , parents can

communicate with children and/or set up pipelines

between children.

10/15/15 CS61 Fall 2015 10

The dup2 system call

• dup2(int filedes, int filedes2)
• duplicates the first file descriptor (filedes) into the second file

descriptor (filedes2).

• After the call, both file descriptors refer to the same object,

so reading from/writing to one descriptor changes the file

position in both descriptors.

• If filedes2 already refers to an open object, that object is

closed.

10/15/15 CS61 Fall 2015 11

Creating a Pipeline (foo | bar)
Note: Terrible error handling to save space!

pid_t child1, child2;
int pipedes[2], status;

assert (pipe(pipedes) == 0); /* Create the pipe. */
child1 = fork();
if (child1 == 0) {

/* child */
close(pipedes[0]); /* Close read end */
dup2(pipedes[1], STDOUT_FILENO); /* Make stdout the same as the pipe write fd

*/
execvp(“foo”, argv); /* Assume argp is set */

}
/* only parent gets here */
child2 = fork();
if (child2 == 0) {

/* child */
close (pipedes[1]); /* Close writing end */
dup2(pipedes[0], STDIN_FILENO); /* Make stdin the sam e as the pipe read fd */
execvp(“bar”, argv);

}
/* Parent once again */
close (pipedes[0]); /* Close pipe fDs in parent. */
close (pipedes[1]);
waitpid(child2, &status, 0); /* Wait for second proc ess to complete. */

10/15/15 CS61 Fall 2015 12

pid_t child1, child2;
int pipedes[2], status;

assert (pipe(pipedes) == 0);
child1 = fork();
if (child1 == 0) {

/* child */
close(pipedes[0]);
dup2(pipedes[1], STDOUT_FILENO);
execvp(“foo”, argv);

}
/* only parent gets here */
child2 = fork();
if (child2 == 0) {

/* child */
close (pipedes[1]);
dup2(pipedes[0], STDIN_FILENO);
execvp(“bar”, argv);

}
/* Parent once again */
close (pipedes[0]);
close (pipedes[1]);
waitpid(child2, &status, 0);

10/15/15 CS61 Fall 2015 13

Creating a Pipeline (foo | bar)
Note: Terrible error handling to save space!

Wrapping Up

• On most UNIX-like systems today, we use

fork/exec to create new processes.

• wait and waitpid allow parents and children to

synchronize.

• The dup2 and pipe calls provide for communication

between parents and children.

• Next, we’ll learn about signals, another mechanism

used to coordinate processes.

10/15/15 CS61 Fall 2015 14

