
Belief Learning

In the study of learning in games, belief learning refers to models in which players
are engaged in a dynamic game and each player optimizes, or ε optimizes, with
respect to a prediction rule, which gives a forecast of future opponent behavior as
a function of the current history. This article focuses on the most studied class of
dynamic games, two player discounted repeated games with finite stage game action
sets and perfect monitoring. An important example of a dynamic game that vio-
lates perfect monitoring and therefore falls outside this framework is Fudenberg and
Levine (1993). For a more comprehensive survey of belief learning, see Fudenberg
and Levine (1998).

The earliest and perhaps best known example of belief learning is the best re-
sponse dynamics of Cournot (1838). In Cournot’s model, each player predicts that
her opponent will repeat next period whatever action the opponent chose in the
previous period.

The most studied belief learning model is Fictitious play, Brown (1951). In
fictitious play, each player predicts that the probability that her opponent will play,
say, L next period, is a weighted sum of an initial probability on L and the frequency
with which L has been chosen to date. The weight on the frequency is t/(t + k)
where t is the number of periods thus far and k > 0 is a parameter; the larger is k,
the more periods the initial probability significantly affects forecasting.

The remainder of this article discusses four topics: (1) belief learning versus
Bayesian learning, (2) convergence to equilibrium, (3) special issues in games with
payoff types, and (4) sensible beliefs.

Belief learning versus Bayesian learning. Recall that, in a repeated game, a behavior
strategy gives, for every history, a probability over the player’s stage game actions
next period. In a Bayesian model, each player chooses a behavior strategy that
best responds to a belief, a probability distribution over the opponent’s behavior
strategies.

Player 1’s prediction rule about player 2 is mathematically identical to a behavior
strategy for player 2. Thus, any belief learning model is equivalent to a Bayesian
model in which the player optimizes with respect to a belief that places probability
one on her prediction rule, now reinterpreted as the opponent’s behavior strategy.

Conversely, any Bayesian model is equivalent to a belief learning model. Explic-
itly, for any belief over player 2’s behavior strategies there is a degenerate belief,
assigning probability one to a particular behavior strategy, that is equivalent in
the sense that both beliefs induce the same distributions over play in the game, no
matter what behavior strategy player 1 herself adopts. This is a form of Kuhn’s
Theorem; Kuhn (1964). I refer to the behavior strategy used in the degenerate belief
as a reduced form of the original belief. Thus, any Bayesian model is equivalent to a
Bayesian model in which each player’s belief places probability one on the reduced
form, and any such Bayesian model is equivalent to a belief learning model.
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As an example, consider fictitious play. I focus on stage games with just two
actions, L and R. By an i.i.d. strategy for player 2, I mean a behavior strategy
in which player 2 plays L with probability q, independent of history. Thus, if
q = 1/2 then player 2 always randomizes 50:50 between L and R. Fictitious play is
equivalent to a degenerate Bayesian model in which each player places probability
one on the fictitious play prediction rule, and one can show that this is equivalent
in turn to a non-degenerate Bayesian model in which the belief is represented as a
Beta distribution over q. The uniform distribution over q, for example, corresponds
to taking the initial probability of L to be 1/2 and the parameter k to be 2.

There is a related but distinct literature in which players optimize with respect
to stochastic prediction rules. In some cases (e.g., Foster and Young (2003)), these
models have a quasi-Bayesian interpretation: most of the time, players optimize with
respect to fixed prediction rules, as in a Bayesian model, but occasionally players
switch to new prediction rules, implicitly abandoning their priors.

Convergence to Equilibrium. Within the belief learning literature, the investigation
of convergence to equilibrium play splits into two branches. One branch investigates
convergence within the context of specific classes of belief learning models. The
best response dynamics, for example, converge to equilibrium if the stage game is
solvable by the iterated deletion of strictly dominated strategies. See Bernheim
(1984) and, for a more general class of models, Milgrom and Roberts (1991). For
an ε optimizing variant of fictitious play, convergence to approximate equilibrium
play obtains for all zero sum games, all games with an interior ESS, and all common
interest games, in addition to all games that are strict dominance solvable, with
the approximation closer the smaller is ε. Somewhat weaker convergence results are
available for supermodular games. These claims follow from results in Hofbauer and
Sandholm (2002).

In either the best response dynamics or ε fictitious play, convergence is to re-
peated play of a single stage game Nash equilibrium; in the case of ε fictitious play,
this equilibrium may be mixed. There is a large body of work on convergence that
is weaker than what I am considering here. In particular, there has been much work
on convergence of the empirical marginal or joint distributions. For mixed strategy
equilibrium, it is possible for empirical distributions to converge to equilibrium even
though play does not resemble repeated equilibrium play: play may exhibit obvious
cycles, for example. The study of convergence to equilibrium play is relatively recent
and was catalyzed by Fudenberg and Kreps (1993).

Hart and Mas-Colell (2003) and Hart and Mas-Colell (2004) (hereafter HM)
study convergence to equilibrium play in learning models, including but not limited
to belief learning models, that are (a) decoupled, meaning that player 1’s behavior
does not depend directly on player 2’s stage game payoffs, and (b) satisfy a memory
bound. They find that universal convergence is impossible for any such model: for
any such model there exist stage games for which play fails to converge to equilibrium
play. For a (continuous time) learning dynamic that is decoupled but violates the
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memory bound and exhibits convergence for all finite stage games, see Shamma and
Arslan (2005).

The second branch of the literature, for which Kalai and Lehrer (1993a) (here-
after KL) is the central paper, takes a Bayesian perspective and asks what conditions
on beliefs are sufficient to give convergence to equilibrium play. I find it helpful to
characterize this literature in the following way. Say that a belief profile (giving
a belief for each player) has the learnable best response property (LBR) if there
is a profile of best response strategies (the LBR strategies) such that, if the LBR
strategies are played, then each player learns to predict the play path.

A player learns to predict the play path if her prediction of next period’s play
is asymptotically as good as if she knew her opponent’s behavior strategy. If the
behavior strategies call for randomization then players accurately predict the dis-
tribution over next period’s play rather than the realization of next period’s play.
For example, consider a 2× 2 game in which player 1 has stage game actions T and
B and player 2 has stage game actions L and R. If player 2 is randomizing 50:50
every period and player 1 learns to predict the path of play then for every ε there
is a time, which depends on the realization of player 2’s strategy, after which player
1’s next period forecast puts the probability of L within ε of 1/2. (This statement
applies to a set of play paths that arises with probability one with respect to the
underlying probability model; I gloss over this sort of complication both here and
below.) For a more complicated example, suppose that in period t player 2 plays L
with probability 1 − α, where α is the frequency that the players have played the
profile (B,R). If player 1 learns to predict the play path then for any ε there is a
time, which now depends on the realization of both players’ strategies, after which
player 1’s next period forecast puts the probability of L within ε of 1− α.

Naively, if LBR holds, and players are using their LBR strategies, then, in the
continuation game, players are optimizing with respect to posterior beliefs that are
asymptotically correct and so continuation behavior strategies should asymptotically
be in equilibrium. This intuition is broadly correct but there are three qualifications.

First, in general, convergence is to Nash equilibrium play in the repeated game,
not necessarily to repeated play of a single stage game equilibrium. If players are
myopic (meaning that players optimize each period as though their discount factors
were zero), then the set of equilibrium play paths comprise all possible sequences
of stage game Nash equilibria, which is a very large set if the stage game has more
than one equilibrium. If players are patient then the folk theorem implies that the
set of possible equilibrium paths is typically even larger.

Second, convergence is to an equilibrium play path, not necessarily to an equi-
librium of the repeated game. The issue is that LBR implies accurate forecasting
only along the play path. A player’s predictions about how her opponent would
respond to deviations may be grossly in error, forever. Therefore, posterior beliefs
need not be asymptotically correct and, unless players are myopic, continuation
behavior strategies need not be asymptotically in equilibrium. Kalai and Lehrer
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(1993b) shows that behavior strategies can be doctored at information sets off the
play path so that the modified behavior strategies are asymptotically in equilibrium
yet still generate the same play path. This implies that the play path of the original
strategy profile was asymptotically an equilibrium play path.

Third, the exact sense in which play converges to equilibrium play depends on
the strength of learning. See KL and also Sandroni (1998).

KL shows that a strong form of LBR holds if beliefs satisfy an absolute con-
tinuity condition: each player assigns positive probability to any (measurable) set
of play paths that has positive probability given the players’ actual strategies. A
sufficient condition for this is that each player assigns positive, even if extremely
low, probability to her opponent’s actual strategy, a condition that KL call grain of
truth. Nyarko (1998) provides the appropriate generalization of absolute continuity
for games with type space structures, including the games with payoff uncertainty
discussed below.

There is no belief learning model that is decoupled (in the sense of HM, cited
above) for which LBR holds for all stage games; one can show this by a direct
diagonalization argument, without appealing to the non-convergence results in HM.
In effect, LBR requires that players take each other’s payoffs into account.

Games with Payoff Uncertainty. Suppose that, at the start of the repeated game,
each player is privately informed of his or her stage game payoff function, which
remains fixed throughout the course of the repeated game. Refer to player i’s stage
game payoff function as her payoff type. Assume that the joint distribution over
payoff functions is independent (to avoid correlation issues that are not central to
my discussion) and commonly known.

Each player can condition her behavior strategy in the repeated game on her
realized payoff type. A mathematically correct way of representing this conditioning
is via distributional strategies; see Milgrom and Weber (1985).

For any belief about player 2, now a probability distribution over player 2’s
distributional strategies, and given the probability distribution over player 2’s payoff
types, there is a behavior strategy for player 2 in the repeated game that is equivalent
in the sense that it generates the same distribution over play paths. Again, this is
essentially Kuhn’s theorem. And again, I refer to this behavior strategy as a reduced
form.

Say that a player learns to predict the play path if her forecast of next period’s
play is asymptotically as good as if she knew the reduced form of her opponent’s
distributional strategy. This definition specializes to the previous one if the distri-
bution over types is degenerate. If distributional strategies are in equilibrium then,
in effect, each player is optimizing with respect to a degenerate belief that puts
probability one on her opponent’s actual distributional strategy and in this case
players trivially learn to predict the path of play.

One can define LBR for distributional strategies and, much as in the payoff
certainty case, one can show that LBR implies convergence to equilibrium play in
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the repeated game with payoff types. More interestingly, there is a sense in which
play converges to equilibrium play of the realized repeated game – the repeated
game determined by the realized type profile. The central paper is Jordan (1991).
Other important papers include KL (cited above), Jordan (1995), Nyarko (1998),
and Jackson and Kalai (1999) (which studies recurring rather than repeated games).

Suppose first that the realized type profile has positive probability. In this case,
if a player learns to predict the play path then, as shown by KL, her forecast is
asymptotically as good as if she knew both her opponent’s distributional strategy
and her opponent’s realized type. LBR then implies that actual play, meaning the
play generated by the realized behavior strategies, converges to equilibrium play of
the realized repeated game. For example, suppose that the type profile for matching
pennies gets positive probability. In the unique equilibrium of repeated matching
pennies, players randomize 50:50 in every period. Therefore, LBR implies that if
the matching pennies type profile is realized then each player’s behavior strategy
involves 50:50 randomization asymptotically.

In contrast, if the distribution over types admits a continuous density, so that no
type profile receives positive probability, then the form of convergence is more subtle.
Consider an outside observer who knows the profile of distributional strategies but
not the realized type profile. For either a discrete or a continuous type distribution,
LBR implies that this outside observer’s posterior over play paths converges to that
of an equilibrium of the realized repeated game. This implies that to an observer
who knows the realized payoff types but not the distributional strategies, realized
play looks asymptotically like equilibrium play.

If the type distibution is continuous, however, actual play (again meaning play
generated by the realized behavior strategies) may not converge to equilibrium play
of the realized repeated game. Indeed, if the realized stage game is like matching
pennies, with a unique and fully mixed equilibrium, and if players optimize (rather
than ε optimize) then actual play cannot converge to equilibrium play asymptoti-
cally, even if the distributional strategies constitute an equilibrium of the type space
game. See Foster and Young (2001). Instead, convergence involves a form of purifi-
cation in the sense of Harsanyi (1973), a point that has been emphasized by Nyarko
(1998) and Jackson and Kalai (1999). For simplicity, suppose that players are my-
opic. Suppose further that LBR holds and that the realized stage game has a unique
and fully mixed equilibrium. With these assumptions, the unique equilibrium of the
realized repeated game calls for repeated play of the stage game equilibrium. It is
not hard to show, in contrast, that optimization in the type space game calls for each
player to play a pure strategy as a function of her realized type. In the type space
game, therefore, actual play is pure but it looks random to an opponent who knows
the distributional strategy but not the realized type, or to an outside observer who
knows the realized type but not the distributional strategy. As play proceeds, each
player in effect learns more about her opponent’s realized type, but (in contrast to
the case in which the realized type profile gets positive probability) never enough
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to zero in on her opponent’s actual play.

Sensible Beliefs. A number of papers investigate classes of prediction rules that
are sensible in that they exhibit desirable properties, such as the ability to detect
certain kinds of patterns in opponent behavior. See Aoyagi (1996), Fudenberg and
Levine (1995), Fudenberg and Levine (1999), and Sandroni (2000).

Nachbar (2005) instead studies the issue of sensible beliefs from a Bayesian
perspective. For simplicity, focus on learning models with known payoffs. Fix a
belief profile, fix a subset of behavior strategies for each player, and consider the
following criteria for these subsets.

• Learnability – given beliefs, if players play a strategy profile drawn from these
subsets then they learn to predict the play path.

• CSP – a diversity or richness condition. Informally (the formal statement is
tedious), CSP requires that if a behavior strategy is included in one of the
strategy subsets then certain variations on that strategy must be included
as well. CSP is satisfied automatically if the strategy subsets consist of all
strategies satisfying a standard complexity bound, the same bound for both
players. Thus CSP holds if the subsets consist of all strategies with k-period
memory, or all strategies that are automaton implementable, or all strategies
that are Turing implementable, and so on.

• Consistency – each player’s subset contains a best response to her belief.

The motivating idea is that beliefs that are probability distributions over strategy
subsets satisfying learnability, CSP, and consistency are sensible beliefs, or at least
are candidates for being considered sensible. Nachbar (2005) studies whether any
such beliefs exist.

Consider, for example, the Bayesian interpretation of fictitious play in which be-
liefs are probability distributions over the i.i.d. strategies. The set of i.i.d. strategies
satisfies learnability and CSP. But for any stage game in which neither player has a
weakly dominant action, the i.i.d. strategies violate consistency: any player who is
optimizing will not be playing i.i.d.

Nachbar (2005) shows that this observation about Bayesian fictitious play ex-
tends to all Bayesian learning models. For large classes of repeated games, for any
belief profile there are no strategy sets that simultaneously satisfy learnability, CSP,
and consistency. Thus for example, if each player believes the other is playing a
strategy that has a k-period memory then one can show that learnability and CSP
hold but consistency fails: best responding in this setting requires using a strategy
with a memory of more than k periods. The impossibility result generalizes to ε
optimization and ε consistency, for ε sufficiently small. The result also generalizes to
games with payoff uncertainty (with learnability, CSP, and consistency now defined
in terms of distributional strategies); see Nachbar (2002).
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I conclude with four remarks. First, since the set of all strategies always satisfies
CSP and consistency, it follows that the set of all strategies is not learnable for any
beliefs: for any belief profile there is a strategy profile that the players will not learn
to predict. This can be also be shown directly by a diagonalization argument along
the lines of Oakes (1985) and Dawid (1985). The impossibility result of Nachbar
(2005) can be viewed as a game theoretic version of Dawid (1985). For a description
of what sets are learnable, see Noguchi (2005).

Second, if one constructs a Bayesian learning model satisfying learnability and
consistency then LBR holds and, if players play their LBR strategies, play converges
to equilibrium play. This identifies a potentially attractive class of Bayesian models
in which convergence obtains. The impossibility result says, however, that if learn-
ability and consistency hold then player beliefs must be partially equilibrated in the
sense of, in effect, excluding strategies required by CSP.

Third, consistency is not necessary for LBR or convergence. For example, for
many stage games, variants of fictitious play satisfy LBR and converge even though
these learning models are inconsistent. The impossibility result is a statement about
the ability to construct Bayesian models with certain properties; it is not a statement
about convergence per se.

Lastly, it may be that learnability, CSP, and consistency are too strong to be
taken as a necessary for beliefs to be sensible. It is an open question whether one
can construct Bayesian models satisfying conditions that are weaker but still strong
enough to be interesting.

Elsewhere in Palgrave: Repeated Games. Adaptive Learning.
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