
FrameVoting:
A Robust and Fast Method of Using

Gaze Estimations to Identify Objects of Interest
Kao Den Chang

Harvard University
kaodenchang@fas.harvard.edu

He-Yen Hsieh
Harvard University

heyenhsieh@g.harvard.edu

H. T. Kung
Harvard University
kung@harvard.edu

Ziyun Li
Meta Reality Labs
liziyun@meta.com

Sai Qian Zhang
New York University
sai.zhang@nyu.edu

Abstract—We introduce FrameVoting, a voting-based method
for real-time, gaze-driven object identification. It is a training-free
method that incurs small computation and low processing latency,
making the method ideal for wearable devices. In FrameVoting,
the Point of Gaze (PoG) in each frame is used to define a
potential region of interest. Regions across multiple frames are
compared using the Sum of Absolute Differences (SAD) as a
similarity measure. Each frame votes for the region from each
of the other frames that is most similar to the region in the
current frame, and only the region receiving the most votes is
considered as the user’s region of interest and sent to a classifier
for inference. FrameVoting thus eliminates the need for frame-
by-frame bounding box retrieval and object detection required
by traditional methods, thereby reducing computation overhead
and latency. The method is robust, as it eliminates the need
for threshold-tuning to determine whether gaze estimations are
focused on a specific object. Further, the method is efficient and
fast, as inference is only performed on the most-voted region, and
the SAD computation is highly parallelizable. Our experiments
on the AEA Dataset demonstrate that FrameVoting reduces
the frequency of inferences by 95.6% compared to frame-by-
frame object detection, while still accurately identifying the user’s
objects of interest in real-time at 30 fps on a Raspberry Pi 5.

I. INTRODUCTION

Modern wearable devices, such as AR/VR headsets, in-
creasingly rely on high-frequency gaze estimations in user
interaction. However, performing object detection in every
frame on the region where the user looks introduces significant
computation overhead and leads to high latency [1]. Addition-
ally, conventional object detection methods require substantial
processing power for object classification, posing challenges
for devices with limited computational and battery resources.

To address these limitations, we propose FrameVoting, a
voting-based method that identifies objects of interest based
on the user’s gaze. Instead of performing object detection
on every frame, our approach classifies objects only when
the gaze consistently focuses on a specific region, indicating
that the user is actively observing an object. By reducing
the frequency of inferences, FrameVoting significantly lowers
computation costs and latency, while also extending battery
life. Thus, the method enables real-time, on-device infer-
ence without offloading computation from wearable devices.
Furthermore, our approach is compatible with existing gaze
estimation models [2] to determine the Point of Gaze (PoG)
for gaze-driven object detection.

Time

Frame-by-Frame
Object Detection

DET

None

FrameVoting

DET

Cup

DET

Cup

DET

Hand

CLS Cup

DET CLS Name

Gaze-Targeted Regions

PoG (Point of Gaze)Object CategoryImage Classification ModelObject Detection Model

One-Time
Inference
per Buffer

Buffer
Pairwise

Similarity

Fig. 1: FrameVoting Performs Inference Based on User
Gaze Estimations: By utilizing gaze-targeted regions (green
label 1) and computing pairwise region similarities (blue label
2), FrameVoting performs only one inference (red label 3) on
the region that is most similar to others in the buffer, using
a voting mechanism. In this demonstration, the third region
receives the most votes (as shown in the third row), thereby
eliminating the need for frame-by-frame object detection (de-
picted in the second row). This approach significantly reduces
overall computational cost and latency.

To motivate the technical approach of this paper, we first
present some background information on human eye behavior.
Human gaze tends to quickly focus and stabilize on objects
of interest, even after brief distractions [3]. FrameVoting
emulates this behavior by analyzing gaze-targeted regions over
time, rather than performing costly frame-by-frame inferences,
which are impractical for wearable devices. During distrac-
tions, gaze-targeted regions generally exhibit low similarity
across frames and can thus be disregarded. Accordingly,
FrameVoting performs inference computations only on regions
where the gaze is consistently directed.

Specifically, FrameVoting examines gaze-targeted regions
for efficient object detection. In each frame, a potential region
of interest is defined based on the PoG, and these regions are
stored in a buffer for comparisons. Regions across multiple
frames are compared using the Sum of Absolute Differences
(SAD) as a similarity measure, with each region voting for
the one most similar to itself among regions in the buffer.

2025 IEEE International Symposium on Circuits and Systems (ISCAS)

The region receiving the most votes is then selected for
classification and considered as the user’s object of interest,
as shown in Figure 1.

Furthermore, FrameVoting eliminates the need for threshold
tuning [4], [5] in determining whether the user is focusing
on a specific object. These thresholds are difficult to calibrate
without prior knowledge of individual eye movement patterns,
which can vary significantly among users [2], [6]. In contrast,
FrameVoting uses a voting mechanism to eliminate the need
for such ad-hoc threshold tuning, allowing the system to adapt
seamlessly to different gaze behaviors without requiring cal-
ibration. Additionally, parallel computation of SAD enhances
processing speed, resulting in higher frame rates and lower
latency, both crucial for reliable performance in real-time
wearable applications.

FrameVoting introduces the following contributions:
1) FrameVoting eliminates the need for continuous frame-

by-frame object detection by only comparing regions
across frames and performing a single object classifica-
tion. This approach significantly reduces computational
cost, inference time, and latency, making it ideal for
low-power applications.

2) Being training-free, FrameVoting is compatible with ex-
isting gaze estimation models [2]. This ensures seamless
integration with current tools and systems.

3) Our experiments using the AEA dataset demonstrates
that FrameVoting reduces the frequency of inferences
by 95.6% compared to frame-by-frame object detection.

II. RELATED WORK

Recent advancements in wearable devices, such as AR/VR
headsets, have increasingly relied on high-frequency gaze
estimations, reaching up to 90 fps [7]. Despite these advance-
ments, integrating real-time object detection on such devices
remains challenging due to the high computational demands
of current methods [8]. These methods often lead to increased
latency and rapid battery depletion, rendering them impractical
for devices with limited resources.

A common approach to addressing these challenges is to
offload the computational burden to the edge or cloud [1].
While offloading alleviates on-device processing, it introduces
substantial bandwidth overhead, often exceeding 60 Mbps,
thereby diminishing efficiency gains. Furthermore, commu-
nication delays adversely affect the real-time performance
required for gaze-driven object dectection on wearable devices.

Fang et al. [5] proposed tuning-based methods that depend
on additional training and tuning phases, achieving a per-
formance of only 1 fps, which is insufficient for real-time
applications. This reliance on model-specific tuning increases
complexity and reduces adaptability, making these methods
unsuitable for low-power, real-time use.

In contrast, FrameVoting introduces a training-free, voting-
based approach that eliminates the need for threshold tuning,
thus lowering computational costs and latency. By leveraging
parallelizable SAD computation, it minimizes overhead and
achieves real-time gaze-driven object identification at 30 fps.

III. EFFICIENT GAZE-DRIVEN OBJECT IDENTIFICATION

This section presents FrameVoting, a method designed to
accelerate gaze-driven object identification by exploiting gaze
stability and employing efficient region selection. FrameVoting
is compatible with existing gaze estimation models [2] for de-
termining the Point of Gaze (PoG). Object detection involves
identifying gaze-targeted regions and subsequently classifying
them. Section III-A discusses the collection of gaze-targeted
regions across consecutive frames using a buffer. Section III-B
elaborates on the voting mechanism, which employs pairwise
similarity using SAD to classify consistently viewed regions.
Section III-C focuses on the parallel processing of SAD,
facilitating high frame rates and low latency.

A. Gaze-Targeted Region Accumulation in a Buffer

Detecting objects of interest based on gaze often relies on
thresholds such as eye stability criteria, fixation duration, and
saccade velocity. Calibrating these thresholds is challenging
due to variations in individual eye movement patterns [2],
[4], [6]. Such variations complicate the detection process, as
thresholds may not generalize well across users. Furthermore,
continuously detecting object locations across frames can
introduce bottlenecks, thereby increasing system latency and
affecting real-time performance.

To address these challenges, FrameVoting leverages gaze
stability to improve object detection. Instead of performing
detection on every frame, FrameVoting collects gaze-targeted
regions from consecutive frames using a buffer. These regions
are obtained by cropping a small area, one-fifth of both the
frame height and width, centered on the PoG in each frame, as
illustrated in Figure 2. The buffer takes advantage of the eye’s
natural tendency to refocus on an object over time [3], with
the accumulated regions reflecting the user’s intent. The buffer
size (N) is determined by the frame rate of gaze estimations
(F) and the interval at which the human eye refocuses on
the object of interest, denoted as S seconds, ensuring that
a majority of gaze-targeted regions in the buffer capture the
intended object. Specifically, the buffer size is defined as:

N ⪆ 2× S × F (1)

This equation enables FrameVoting to effectively capture the
user’s object of interest. By spanning more than twice the time
required for the human eye to refocus, the buffer primarily
contains frames corresponding to the object of interest, thereby
making the system robust to brief distractions. Given a typical
refocusing time of 0.2 seconds (S) and a frame rate of 30 fps
(F), the buffer size (N) is set to 12 gaze-targeted regions, as
illustrated in Figure 4.

B. Voting-Based Region Classification

Pairwise Similarity: After accumulating the gaze-targeted
regions in the buffer, FrameVoting computes the pairwise
similarity between these regions using SAD, formulated as:

SADij =
∑

|IRi − IRj | (2)

Time

User’s Eyes

User’s View
with PoG

Gaze-
Targeted
Regions in
the Buffer

1

2

3

Classifier Cup

Classifier
Cell

Phone

1

3

One-Time Inference per Buffer

One-Time Inference per Buffer

Name

#

PoG (Point of Gaze)

Voting Round

Object Category

Most-Voted Gaze-
Targeted Regions

Annotations

Skip Inference
if in First Half
of the Buffer

2

Fig. 2: FrameVoting Illustration of Performing One-Time Inference Per Buffer: The top row displays the user’s eye
movement, followed by the PoG projected onto the user’s view in the second row. FrameVoting uses a buffer to gather
gaze-targeted regions. Within the buffer, similarities between regions are computed, and only the region with the most votes
(highlighted by a yellow border) is forwarded to the classifier for region classification, as depicted in the third row. The buffer
is then shifted to collect new cropped regions, starting just after the frame with the most votes. As indicated in the fourth row,
if the region with the most votes is located in the first half of the buffer, classification is skipped. The process continues with
shifting the buffer, and classification is performed on the most-voted region in the final row.

where IRi and IRj represent the i-th and j-th regions in the
buffer. Each region is compared to every other region, with the
one exhibiting the lowest SAD value deemed the most similar.
In this approach, each region votes for the region most similar
to itself within the buffer. The region that receives the most
votes, due to its similarity across comparisons, is selected as
the target region, as illustrated in Figure 3.

Inference Skipping: A region with the most votes is
selected for one-time classification inference if it is located
in the second half of the buffer and exhibits a significant
statistical difference from the previously inferred region, de-
termined through voting. Conversely, inference is skipped to
prevent redundant computations. This process ensures that
FrameVoting performs region classification only when there
is a consistent user focus on a region that differs significantly
from the previously inferred region, thereby reducing unnec-
essary computations and improving overall efficiency.

FrameVoting Demonstration: The last three rows in
Figure 2 illustrate the FrameVoting process. For simplicity,
this example uses a buffer size of 6 gaze-targeted regions.
FrameVoting computes the pairwise similarity of the accumu-
lated gaze-targeted regions within the buffer. The region with
the most votes (highlighted by a yellow border) is selected
and passed to the classifier for region classification, provided
it is not skipped due to the criteria mentioned in the previous
section. The buffer is then shifted forward to collect new
gaze-targeted regions, beginning immediately after the time
frame with the most votes. This process continues, ensuring
efficient region classification, with classification performed on
the most-voted region only when necessary.

C. Parallelization of SAD Computation
SAD is highly parallelizable [9], making it ideal for real-

time applications. The absence of data dependencies in pair-

117 106121 123114

117 5357 7369

57121 49 5756

53106 49 6259

69114 5956 23

73123 6257 23

Votes for
the Most
Similar
Region

Region
4

Region
4

Region
4

Region
3

Region
6

Region
5

Region with
Lowest SAD

Region 1 Region 6Region 5Region 4Region 3Region 2

Region 1

Region 2

Region 3

Region 4

Region 5

Region 6

Fig. 3: Voting Mechanism Based on SAD Computation: The
table displays candidate regions in the top row and leftmost
column, with pairwise SAD scores listed within, expressed in
units of 10,000. For each region, the lowest SAD score in
its row indicates the region to which it is most similar. The
rightmost column summarizes the voting results, showing that
Region 4 receives the most votes, being selected three times.

wise SAD calculations allows for efficient parallel processing.
Further acceleration is achieved by fusing subtraction, abso-
lute, and summation operations into a single operation using
CPU intrinsics [10]. This optimization enhances FrameVot-
ing’s efficiency, enabling high frame rates and low latency.

IV. EXPERIMENTS

A. Experimental Setup

We evaluate FrameVoting using the Aria Everyday Activi-
ties (AEA) dataset [7], which provides diverse gaze scenarios

Method # of Inferences Reduction of Inferences FPS

Baseline (Frame-by-Frame) 1,293 - 1
FrameVoting 57 95.6% 30

TABLE I: Comparison of Conventional Frame-by-Frame
Object Detection and FrameVoting: The table presents the
number of inferences, reduction in inferences, and frame rate
(fps), demonstrating how FrameVoting significantly reduces
the number of inferences and improves the frame rate.

through eye images captured with Project Aria glasses dur-
ing various daily activities. YOLOv7-tiny [11] is employed
as the object detector throughout the experiments. All tests
are conducted on a Raspberry Pi 5, without any additional
acceleration modules, with frames input at a rate of 30 frames
per second.

B. Gaze-Driven Object Detection Comparisons

Table I compares the baseline frame-by-frame object de-
tection method with FrameVoting on the AEA dataset. Both
methods utilize the same object detector, YOLOv7-tiny, to
ensure consistency. In the baseline approach, object detection
is performed on every frame using the full frame dimensions
to retrieve bounding boxes and classification results, resulting
in high computational costs. In contrast, FrameVoting focuses
solely on gaze-targeted regions, each sized at one-fifth of the
original frame’s height and width, using the same detector
solely for region classification. This approach eliminates the
need for bounding box retrieval and frame-by-frame inference,
significantly reducing computation time. By avoiding frame-
by-frame inference, FrameVoting achieves a 95.6% reduction
in the number of inferences (from 1,293 to 57). Consequently,
this reduction leads to a substantially higher frame rate,
enabling FrameVoting to maintain real-time performance at
30 fps, compared to the baseline method’s 1 fps.

C. Ablation Study

Buffer Size and Inference Precision: Figure 4 examines
the effect of buffer size (N in Equation 1) on the effectiveness
of FrameVoting in identifying the user’s objects of interest in
videos. This analysis highlights how accurately the selected
region matches the object of interest. We introduce the metric
Inference Precision, defined as:

Inference Precision =
Effective Inferences

Total Inferences
where Effective Inferences occur only when FrameVoting
correctly identifies an object of interest that the user is focusing
on, counted only once per continuous focus on the same object.
Our analysis shows that a buffer size of 12 achieves the best
results in terms of precision, under the conditions specified in
Equation 1.

FrameVoting Configurations: Table II evaluates the effec-
tiveness of various FrameVoting configurations based on the
number of inferences. Row 1 presents the Baseline (Frame-
by-Frame) approach, where object detection is performed on
every frame, resulting in 1,293 inferences, making it the

6 8 10 12 14
Buffer Size

75

80

85

90

In
fe

re
nc

e
Pr

ec
isi

on
 (%

)

Inference Precision vs. Buffer Size

Fig. 4: Ablation Study on Buffer Size v. Inference Precision

Row Method Skip Most-Voted Regions # of Inferences (Reduc.)

Similarity-Based Buffer-Based

1 Baseline (Frame-by-Frame) - - 1,293 (-)

2

FrameVoting

- - 305 (↓ 76.4%)
3 ✓ - 248 (↓ 80.8%)
4 - ✓ 60 (↓ 95.4%)
5 ✓ ✓ 57 (↓ 95.6%)

TABLE II: Ablation Study Comparing Baseline and
FrameVoting Configurations: The table highlights the ap-
plied skipping methods, the resulting number of inferences,
and the respective reduction percentages.

least efficient setting. Row 2 represents the base FrameVoting
configuration, where gaze-targeted regions are accumulated
in a buffer, and the most-voted region from each buffer is
selected for classification. This setup requires 305 inferences,
achieving a 73.6% reduction in inferences compared to the
baseline. To further improve efficiency, redundant region clas-
sifications can be avoided by skipping the most-voted region
in the subsequent buffer when applicable. Row 3 introduces
Similarity-Based Skipping, where inferences are skipped if
the most-voted region is similar to the previously selected
region. This approach reduces the number of inferences to 248,
resulting in an 80.8% reduction. Row 4 applies Buffer-Based
Skipping, where inferences are skipped for regions located in
the first half of the buffer. This method reduces the number of
inferences to 60, achieving a 95.4% reduction. Finally, Row
5 combines both Similarity-Based Skipping and Buffer-Based
Skipping, further reducing the number of inferences to 57.
This achieves a 95.6% reduction compared to the baseline.

V. CONCLUSION

In this paper, we introduce FrameVoting, an efficient method
for real-time gaze-driven object identification. By exploring
the stability that the Point of Gaze (PoG) may present,
FrameVoting significantly reduces computational overheads.
The method uses a voting mechanism based on the Sum of
Absolute Differences (SAD) to select only the gaze-targeted
region with the highest similarity across frames to perform in-
ference. Our evaluation on the AEA Dataset demonstrated that
FrameVoting reduces the frequency of inferences by 95.6%
compared to conventional methods. The parallel computation
of SAD further speeds up the processing to achieve real-
time performance at 30 fps on a Raspberry Pi 5, making
FrameVoting ideal for resource-limited wearable devices.

ACKNOWLEDGMENT

This research was supported in part by the Air Force
Research Laboratory under award number FA8750-22-1-0500,
and in part by Meta Platforms Technologies under award
number A51540.

REFERENCES

[1] L. Liu, H. Li, and M. Gruteser, “Edge assisted real-
time object detection for mobile augmented reality,” in
The 25th Annual International Conference on Mobile
Computing and Networking, ser. MobiCom ’19, New
York, NY, USA: Association for Computing Machinery,
Aug. 5, 2019, pp. 1–16.

[2] R. Kothari, Z. Yang, C. Kanan, R. Bailey, J. B. Pelz, and
G. J. Diaz, “Gaze-in-wild: A dataset for studying eye
and head coordination in everyday activities,” Scientific
Reports, vol. 10, no. 1, p. 2539, Feb. 13, 2020.

[3] T. Tammi, J. Pekkanen, S. Tuhkanen, L. Oksama, and
O. Lappi, “Tracking an occluded visual target with
sequences of saccades,” Journal of Vision, vol. 22, no. 1,
Jan. 2022.

[4] L. Chukoskie, S. Guo, E. Ho, et al., “Quantifying gaze
behavior during real-world interactions using automated
object, face, and fixation detection,” IEEE Transactions
on Cognitive and Developmental Systems, vol. 10, no. 4,
pp. 1143–1152, Dec. 2018.

[5] W. Fang and K. Zhang, “Real-time object detection of
retail products for eye tracking,” in 2020 8th Interna-
tional Conference on Orange Technology (ICOT), Dec.
2020, pp. 1–4.

[6] H. Nurlatifa, R. Hartanto, A. Ataka, and S. Wibirama,
“Optimum object selection methods for spontaneous
gaze-based interaction with linear and circular trajec-
tories,” Results in Engineering, vol. 21, p. 101 769,
Mar. 1, 2024.

[7] Z. Lv, N. Charron, P. Moulon, et al., Aria everyday
activities dataset, 2024.

[8] “Object tracking for visionOS is here - but how does
it work?” LEARN XR BLOG, Available: https://blog.
learnxr.io/xr- development/apple- object- tracking- for-
visionos-is-here.

[9] A. Medhat, A. Shalaby, M. S. Sayed, M. Elsabrouty,
and F. Mehdipour, “A highly parallel SAD architecture
for motion estimation in HEVC encoder,” in 2014
IEEE Asia Pacific Conference on Circuits and Systems
(APCCAS), Nov. 2014, pp. 280–283.

[10] S. Manilov, B. Franke, A. Magrath, and C. Andrieu,
“Free rider: A source-level transformation tool for
retargeting platform-specific intrinsic functions,” ACM
Trans. Embed. Comput. Syst., vol. 16, no. 2, 38:1–38:24,
Dec. 12, 2016.

[11] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao,
“YOLOv7: Trainable bag-of-freebies sets new state-
of-the-art for real-time object detectors,” in 2023
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), ISSN: 2575-7075, Jun. 2023,
pp. 7464–7475.

