
GASA: Rank-Sliced GAther-Scatter Activations and Application to
Sparsity-Preserving Parameter-Efficient Fine-Tuning

H. T. Kung
kung@harvard.edu
Harvard University

Andrew Sabot
asabot@g.harvard.edu

Harvard University

Abstract—We present a novel rank-sliced GAther-Scatter Acti-
vation (GASA) algorithm to minimize I/O costs in computing
neural network layer activations (XW ) between a data matrix
X , and a singular value decomposition (SVD) of a weight
matrix W = UΣV T . We maintain high accuracy with ResNet-
18 [1] on the CIFAR-10 [2] dataset and Deberta-V3-base [3]
on the IMDB dataset [4] at high sparsities (i.e., up to 85%
sparsity for U and V ) by using rank pruning for W and UV

pruning for each rank slice. Furthermore, with rank-sliced
computation, we can perform parameter-efficient fine-tuning
on the resulting sparse networks while preserving sparsity
to retain the sparsity-induced computational efficiency for
inference. That is, our rank-sliced weight update preserves the
original sparsity structure of each W . Our sparsity-preserving
fine-tuning maintains model accuracy under adapter ranks as
low as 8, compared to the rank of 150 of the pre-trained pruned
model.

1. Introduction
In this paper, we describe GAther-Scatter Activation

(GASA) for computing activations in a neural network
layer. For a given data matrix X and a weight matrix W
in the singular value decomposition (SVD) representation,
W = UΣV T , GASA is a novel algorithm that computes
XW in a rank-sliced manner, where each rank slice (or
simply slice) S of W is the rank-1 product of a column
vector u and a row vector v in U and V T , respectively.

In GASA, we compute XS for each rank slice S using
a gather-scatter method that gathers columns of X into a
gathering vector xg according to u and then scatters the
gathering vector to columns of XS according to v. We then
compute XW by computing XS for all rank slices. We
sparsify W by performing rank prunning of W and UV
pruning of U and V matrices.

Rank pruning followed by rank-sliced pruning can prune
a high percentage of model parameters, e.g., using 50%
rank-sliced pruning after 70% rank pruning (Table 1). If
we perform a% pruning on Σ, followed by b% rank-sliced
UV pruning on U and V , the compounded pruning rate is:
1−(1−a)(1−b) = a+b−ab. For a = 70% and b = 50%, the
compounded pruning rate is 0.85 = 0.70+0.50−0.70·0.50.

The GASA rank-sliced computation lends itself to
sparsity-preserving parameter-efficient fine-tuning, which

preserves the sparsity of W created with rank pruning
and rank-sliced UV pruning. The popular low-rank fine-
tuning method LoRA [5] does not preserve sparsity since the
product of its low-rank update matrices A and B is generally
not sparse and is not guaranteed to match the sparsity
pattern of the original weight matrix W . In contrast, GASA
preserves sparsity patterns, improving inference efficiency.
Figure 3(c) illustrates a rank-2 fine-tuning involving two
rank-1 adapter slices Sf and Sg, which have the same
sparsity structures as existing slices S1 and S2, respectively.
After fine-tuning, slices Sf and Sg can be added to slices
S1 and S2, respectively, keeping the same sparsity structure.
Thus, GASA’s rank-sliced fine-tuning does not introduce
inference latency because fine-tuning updates are merged
with the original weights. Also, the rank-sliced activation
computation based on Figures 1 and 2 can take advantage
of the same sparsity for the fine-tuned slices.

Additionally, GASA is I/O efficient. Suppose that matri-
ces X and W are n×n, and the local memory can hold 3n
vectors (gathering, u and v vectors) plus some additional
vectors to support data streaming. Then GASA uses the
minimum possible IO in the sense that it reads and writes
each column vector of X and XW from and to the external
memory at most once, respectively (Section 2).

In summary, the contributions of this paper are:
• A rank-sliced gather-scatter method GASA for com-

puting activations (Section 2 and Figure 1).
• Analysis of how GASA achieves the minimum possible

I/O (Section 2.2).
• A method for sparsifying the weight matrix with rank

pruning of W and rank-sliced UV pruning, along with
empirical performance results for the resulting sparse
weight matrix (Section 4, Table 1).

• Rank-sliced sparsity-preserving parameter-efficient
fine-tuning, a different take on the LoRA low-rank
approach, on the rank pruned and UV -pruned model
Section 5), along with empirical performance results
on Deberta V3 base (Figure 5) where we use adapters
with ranks as low as 8.

2. Computing Activations With Gather-Scatter

Given an n×n data matrix X and an SVD of an n×n
weight matrix W = UΣV T , with rank-sliced computation,

2025 IEEE International Symposium on Circuits and Systems (ISCAS) 



xgx2 x3x1 x4

u

v
by 2 by 2 by 4

3

0

2

0

X XS

S u

v=

(a) A rank-1 slice S of the weight matrix

Gathering

(b) Gather-scatter activation computation for a slice S 
Scattering

Multiplied by 3

4002

3

0

2

0

4002

Gathering
vector

Figure 1: The gather-scatter algorithm of computing ac-
tivations for a rank-1 slice S of a weight matrix W . (a) A
rank-1 slice S of W is the product of a column vector u
and a row vector v. (b) For an activation data matrix X ,
we compute XS for a slice S in two stages. In the first
stage, we gather column vectors of X to form a gathering
vector xg, according to u. In the second scattering stage,
we distribute xg to form columns of the result matrix XS,
according to v.

we can compute activations XW with efficient use of I/O
resources, as illustrated in Figure 1. We assume W is rank-
deficient and is rank pruned to rank r (where r < n). For
illustrative simplicity in Section 2, we assume that r = 3.
Note that:

W = σ1S1 + σ2S2 + σ3S3

with each Si being a rank-1 matrix. We call each Si a
rank slice or simply a slice of W , see Figure 1(a) for an
illustration of a S slice. Note that each slice is the product
uv of some column vector u and row vector v. We assume
in this example that u and v are 50% sparse, i.e., sparsity
α = 50%.

2.1. Gather-and-Scatter Activations for a Single
Rank Slice

Consider gather-and-scatter computing of XS for a
slice S as depicted in Figure 1(b). Suppose that X =
[x1, x2, x3, x4] where each xi is a column vector and
S = uv where u is a column vector containing (3, 0, 2, 0)
and v is a row vector containing (2, 0, 0, 4). We compute
XS in two stages:

1) Gather columns of X according to u to form a gath-
ering vector xg. That is, xg is a weighted sum of the
gathered vectors. In our example, xg = 3x1 + 2x3.

2) Scatter the gathering vector xg to multiple columns
according to v. That is, each of these columns is
a scaled copy of xg. In our example, the scattered
columns form a matrix [2xg, 0, 0, 4xg].

The gather-scatter algorithm (see Figure 1(b)) allows
column-skipping when there is sparsity of any pattern in

x2 x3x1 x4 xg

X

XS1

xg

xg

u1

v1

u2

u3
XS2

v2

XS3

v3

XW

ACC

for S1

for S2

for S3

(a) Rank-sliced activation
computation for all slices Si

(b) I/O in a
memory hierarchy 

Local Memory

External Memory

Computing 
Cores

I/O

The gather-scatter 
algorithm achieves the 
minimum possible IO by 
reading each column 
vector of X at most once 
and writing each column 
vector of XW at most once

ACC

Figure 2: (a) We compute activations XW , given a data
matrix X and weight matrix W , by computing XSi for all
slices Si of W . Here, W consists of three slices: S1, S2

and S3, where Si = uivi. We first compute XS1, XS2,
and XS3, and then perform weighted accumulation of these
results with σ1, σ2 and σ3 being the weighting coefficients,
as denoted in the ACC circle in the diagram. (b) We can
minimize I/O on a memory hierarchy. Suppose that X , as
well as ui and vi, for all slices, are initially stored in the
external memory and that computed results XW are to be
written to the external memory. Suppose further that the
local memory can hold the gathering vectors xg for all slices
plus a few intermediate vectors to support data streaming.
Then by scheduling the gather-scatter algorithm achieves the
minimum possible I/O.

u and v. In the gathering stage, we can skip loading and
multiplying the column vectors corresponding to zero en-
tries in u. Similarly, in the scattering stage, we can skip
multiplying the gathering vector and storing the resulting
vectors corresponding to zero entries in v.

We now count multiplications in the gather-scatter algo-
rithm. Let α be the sparsity of u and v for all slices of W
with rank r. Suppose that X is n× n. Then for each slice,
the gathering and scattering stages each incur (1 − α)n2

multiplications. If there are r slices, then the total number
of multiplications is 2(1 − α)rn2. The factor of 2 comes
from the multiplications with U and V . We can similarly
count additions.

2.2. Gather-and-Scatter Activations for all Rank
Slices

We compute activations XW by computing
XS1, XS2, XS3 for all rank slices Si and accumulating the
result σ1XS1 + σ2XS2 + σ3XS3. The computation uses a
working set of r vectors of size n, where r is the rank of
W , plus a few additional vectors for intermediate results
to support data streaming. We assume that we have access
to a local memory to hold the working set, as depicted in
Figure 2(b).

The computation can minimize I/O as described below.
When computing the 3 gathering vectors for XS1, XS2,
and XS3 in the gathering stage, we will use local memory



to cache the intermediate vectors. After a column vector of
X is read from the external memory, scaled copies of this
column vector are added to intermediate gathering vectors
that correspond to the destination gathering vectors required
for this column vector. This implies that we only need to
read each column vector of X from the external memory at
most once. Therefore, a total of at most n vector reads are
required for the gathering operations for all XSi’s.

In terms of data movement, the scattering operation is
the reverse of the gathering operation. Before a result vector
is written to external memory, it will accumulate all the
required scaled gathering vectors. This means that we only
need to write each column of the result matrix to external
memory once. Therefore, a total of at most n vector writes
are required for the scattering operations for all XSi’s.

For dense Si’s with dense u and v vectors, these n vector
reads and writes are theoretically the minimum required. In
contrast, the inner-product-based matrix multiplication in-
curs O(n2) vector reads and n vector writes when performed
on a local memory of the same size.

From the analysis in Section 2, we summarize the fol-
lowing results for the Gather-and-Scatter method.

• Suppose that we have access to a small local memory
that can hold r vectors of size n, where r is the
rank of W , plus a few intermediate vectors. Then we
can compute activations XW with n vector reads and
writes from and to the external memory, respectively.

• Suppose that W has rank r and, for each slice Si, the
associated u and v each have α percent of entries being
zeros. Then we can compute XW with 2(1 − α)rn2

multiplications and additions.

3. Two Types of Pruning

Rank Pruning: (Figure 3(a)) Given a weight matrix
W of a pretrained model, we decompose W with SVD:
W = UΣV T [6], [7]. We can prune W by dropping some
number of the lowest singular values in Σ. UV Pruning:
(Figure 3(c)) To increase sparsity, we can further prune u
and v vectors of U and V , respectively —independent of Σ.

4. Sparsity-Preserving Low-Rank Fine-Tuning

We ensure the weight and low-rank update matrices have
the same sparsity structures, so the sum of these matrices
preserves the original weight matrix sparsity, as shown in
Figure 3(c). To this end, we perform rank-1 updates on a
subset of the weight matrix slices and ensure each slice
update is sparsity-preserving. E.g., for a rank-8 update, we
update the slices corresponding to the 8 largest singular
values. This allows us to control the rank of the updates,
similar to LoRA.

Suppose that S is any of these slices to be updated and
S = uv for some sparse column vector u and row vector v.
Then we will learn a low-rank update ∆S for S by learning
updates ∆u and ∆v for u and v, respectively. We preserve
the sparsity structure of S for S+∆S by choosing the same
sparsities of u and v for ∆u and ∆v, respectively.

∗∗00

W

=

(a) Rank pruning of the weight matrix

(b) UV pruning of rank slices

0∗0∗∗

0

0

∗

= +
∗00∗0

∗

0

*

+
∗

0

0

*

(c) Rank-sliced sparsity-preserving low-rank fine-tuning

u1

v1

u2

v2

u3

v3

U
V

Slice S1 Slice S2 Slice S3

Σ

VΣ
U

+
0∗0∗∗

0

0

∗

uf

vf

Slice Sf

Rank-2 fine-tuning adapterPre-trained pruned network with frozen parameters

σ1 σ2 σ3

+
∗00∗0

∗

0

∗

ug

vg

Slice Sg

σf σg

∗∗000∗0∗∗

0

0

∗

+
∗00∗0

∗

0

*

+
∗

0

0

*

u1

v1

u2

v2

u3

v3

Slice S1 Slice S2 Slice S3

σ1 σ2 σ3

σ3

σ2
σ1

σ3

σ2
σ1

Figure 3: In GASA, the initial weight matrix W is first
decomposed into the SVD representation W = UΣV T .
The rank of W is then pruned to create a low-rank rep-
resentation. Diagram (a) depicts an example of this low-
rank representation with a rank equal to three and singular
values being σ1, σ2 and σ3. Diagram (b) shows that UΣV T

is a weighted sum of three rank-1 products u1v1, u2v2, and
u3v3 for slices S1, S2 and S3, respectively, where u and
v vectors have sparsity α = 50%. Diagram (c) illustrates
our proposed rank-sliced sparsity-preserving low-rank fine-
tuning. The two rank-1 fine-tuning slices Sf and Sg preserve
the sparsity structures of slices S1 and S2, respectively.

40 50 60 70 80 90 100
Percent of Sigma's set to 0

75

80

85

90

95

Ac
cu

ra
cy

a) ResNet-18 Accuracy on CIFAR-10

Rank pruning
unstructered

40 50 60 70 80 90 100
Percent of Remaining U Pruned

75

80

85

90

95

Ac
cu

ra
cy

b) ResNet-18 with 85% Rank pruning 
 Accuracy on CIFAR-10

Figure 4: a) Accuracy of ResNet-18 on CIFAR-10 under
various levels of rank pruning. b) Further pruning the U
matrix after applying 85% rank pruning. The graph is a
result of the process in Section 3 and Figure 3.

5. Results for Sparsity-Preserving Low-Rank
Fine-Tuning

In this section we demonstrate that the weight matrices
of both convolution and transformer networks are amenable
to rank pruning and UV matrix pruning as shown in Fig-
ure 3(a) and (b). In Figure 4(a) we show the accuracy

Rank Pruned / Rank No U/V Pruning 50% U 50% U & V
0% 768 0.92008 0.88856 0.88592
50% 384 0.90688 0.88892 0.87624
60% 307 0.89652 0.8798 0.8646
70% 230 0.88652 0.86688 0.85052
80% 153 0.8608 0.85268 0.835

TABLE 1: Accuracy of Deberta-v3-base [3] on the IMDB
dataset [4] under various rank-sliced pruning configurations.
Note the initial rank of the model is 768.



0 20 40 60 80 100 120
Adapter Rank

0.86

0.87

0.88

0.89

0.90

Ac
cu

ra
cy

Accuracy vs Adapter Rank (After Rank Pruning)

50% Rank Pruning
60% Rank Pruning
70% Rank Pruning
80% Rank Pruning

Figure 5: Accuracy of Deberta-v3-base on the IMDB dataset
when fine tuning with a low-rank adapter. Our method,
illustrated in Figure 3(c) achieves close to the performance
shown in Table 1 while using adapters of small rank, e.g., 20
as opposed to the pretrained pruned model with rank 150.

of ResNet-18 [1] on CIFAR-10 [2] with rank pruning. In
Figure 4(b) we can see that 85% rank pruning and up to
90% U pruning can achieve high accuracy.

We use Deberta-v3-base [3] and the IMDB dataset [4]
to demonstrate how this fine tuning method is applicable
to transformers. Each run started with a Deberta-v3-base
model, converted it to SVD form and trained it for one
epoch. Training using decomposition-based layers for one
epoch before rank pruning significantly improved accuracy
compared to pruning immediately after SVD. Then the SVD
rank was pruned (iteratively for higher sparsity). Finally, the
U and V matrices were pruned together.

Table 1 shows a slight drop in accuracy as the rank
pruning increases. There is also a 1-2% drop in accuracy
when combining the pruning of the U and V matrices. In
Figure 5, we present the results of incorporating a low-rank
adapter within the Deberta model. The model undergoes
rank pruning, followed by fine-tuning with the integration
of a low-rank adapter, as illustrated by Figure 3(c). This
approach substantially reduces the number of trainable pa-
rameters needed. For example, in the case of Deberta-v3-
base, the feedforward matrix in each Transformer block
initially has an SVD rank of 768. After rank pruning, the
matrix rank is reduced to ≈150 (See Table 1 for reduced
ranks). During fine-tuning, we freeze this matrix and train
low-rank adapter matrices on the IMDB dataset. Figure 5
reports accuracy results of our sparsity-preserving low-rank
fine-tuning using adapters with ranks ranging from 1 to 128.

6. Background and Related Work

6.1. Gather-Scatter

Gather-scatter algorithms are widely used in fields such
as signal processing, scientific computing, and parallel com-
puting. They operate in two primary stages: a gather phase,
where data is read from external memory, and a scatter
phase, where the computed data is written back to the
memory system or an output matrix [8], [9]. In this work,
we extend the gather-scatter approach to a new area, that is,
efficient computation of activations between a data matrix
X and a weight matrix represented in SVD form.

6.2. Parameter-Efficient Fine Tuning

Parameter-Efficient Fine-Tuning (PEFT) techniques aim
to minimize the number of parameters that need to be fine-
tuned. Methods like Low-Rank Adaptation (LoRA) [5] fall
under PEFT by adding trainable low-rank matrices to the
weights, reducing the computational load of full fine-tuning
without adding inference delay.

Masked LoRA [10] introduces a mask over the adapta-
tion matrices to enforce sparsity. By applying a masking
technique, it ensures that only a subset of weights are
updated during fine-tuning, further reducing the overhead of
adapting large models. SORA (Sparse Zero-Rank Adapta-
tion) [11] zeros out specific ranks during LoRA updates. The
approach selectively sets certain ranks in the LoRA updates
to zero, effectively reducing the update dimensionality.

RoseLoRA [12] introduces sparsity directly into the
A and B matrices used in LoRA updates. A and B are
multiplied to provide a sparse update to the original weight
matrix. This approach results in a sparse update, but the
sparsity pattern may not be compatible with the original
weight matrix, decreasing final sparsity.

DoRA [13] a weight-decomposed low-rank adaptation.
It seperates the magnatude and direction of the weights and
creates a low-rank adapter for the direction of the weights
while leaving the magnitude unfrozen. LoRA-XS [14] uses
an SVD of the original weight matrix to create a frozen
low-rank adapters and an unfrozen low-rank update. This
approach demonstrates the benefits of SVD but does not
address sparsity of the SVD matrices.

None of these PEFT methods have the goal of preserving
sparsity structures without introducing additional masks.

7. Conclusion
In this paper, we introduced the GAther-Scatter Activa-

tion (GASA) algorithm, a novel method for efficiently com-
puting activations in neural network layers with weight ma-
trices represented using SVD. GASA utilizes a rank-sliced
approach, which computes matrix products in a gather-
scatter manner, allowing skipping column computations due
to sparsity in u and v vectors and sparsity-preserving fine-
tuning. We demonstrate that GASA can significantly reduce
I/O costs, achieving the theoretical minimum by reading and
writing each matrix column at most once.

A key contribution of GASA is its ability to enable rank-
sliced, sparsity-preserving low-rank fine-tuning, providing
an alternative to LoRA that generate updates, not guaranteed
to be compatible with the original networks sparsity. In
summary, GASA offers a framework for efficient activation
computation and low-rank fine-tuning in neural networks,
preserving sparsity while minimizing I/O.

8. Acknowledgments
This research was supported in part by the Air Force

Research Laboratory under award number FA8750-22-1-
0500, and in part by Meta Platforms Technologies under
award number A51540.



References

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” 2015. [Online]. Available: https://arxiv.org/abs/
1512.03385

[2] A. Krizhevsky, “Learning multiple layers of features from tiny
images,” 2009. [Online]. Available: https://api.semanticscholar.org/
CorpusID:18268744

[3] P. He, J. Gao, and W. Chen, “Debertav3: Improving deberta using
electra-style pre-training with gradient-disentangled embedding
sharing,” 2023. [Online]. Available: https://arxiv.org/abs/2111.09543

[4] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng,
and C. Potts, “Learning word vectors for sentiment analysis,” in
Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, D. Lin,
Y. Matsumoto, and R. Mihalcea, Eds. Portland, Oregon, USA:
Association for Computational Linguistics, Jun. 2011, pp. 142–150.
[Online]. Available: https://aclanthology.org/P11-1015

[5] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
and W. Chen, “Lora: Low-rank adaptation of large language models,”
2021. [Online]. Available: https://arxiv.org/abs/2106.09685

[6] G. H. Golub and C. Reinsch, “Singular value decomposition and
least squares solutions,” Numer. Math., vol. 14, no. 5, p. 403–420,
Apr. 1970. [Online]. Available: https://doi.org/10.1007/BF02163027

[7] G. Strang, Linear algebra and learning from data. SIAM, 2019.

[8] B. He, N. K. Govindaraju, Q. Luo, and B. Smith, “Efficient gather and
scatter operations on graphics processors,” in SC ’07: Proceedings of
the 2007 ACM/IEEE Conference on Supercomputing, 2007, pp. 1–12.

[9] P. Pacheco, An introduction to parallel programming. Elsevier, 2011.

[10] J. Wang, G. Yang, W. Chen, H. Yi, X. Wu, Z. Lin, and Q. Lao, “Mlae:
Masked lora experts for visual parameter-efficient fine-tuning,” 2024.
[Online]. Available: https://arxiv.org/abs/2405.18897

[11] N. Ding, X. Lv, Q. Wang, Y. Chen, B. Zhou, Z. Liu, and M. Sun,
“Sparse low-rank adaptation of pre-trained language models,” 2023.
[Online]. Available: https://arxiv.org/abs/2311.11696

[12] H. Wang, T. Liu, R. Li, M. Cheng, T. Zhao, and J. Gao, “Roselora:
Row and column-wise sparse low-rank adaptation of pre-trained
language model for knowledge editing and fine-tuning,” 2024.
[Online]. Available: https://arxiv.org/abs/2406.10777

[13] S.-Y. Liu, C.-Y. Wang, H. Yin, P. Molchanov, Y.-C. F. Wang,
K.-T. Cheng, and M.-H. Chen, “Dora: Weight-decomposed low-rank
adaptation,” 2024. [Online]. Available: https://arxiv.org/abs/2402.
09353

[14] K. Bałazy, M. Banaei, K. Aberer, and J. Tabor, “Lora-xs: Low-rank
adaptation with extremely small number of parameters,” 2024.
[Online]. Available: https://arxiv.org/abs/2405.17604

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744
https://arxiv.org/abs/2111.09543
https://aclanthology.org/P11-1015
https://arxiv.org/abs/2106.09685
https://doi.org/10.1007/BF02163027
https://arxiv.org/abs/2405.18897
https://arxiv.org/abs/2311.11696
https://arxiv.org/abs/2406.10777
https://arxiv.org/abs/2402.09353
https://arxiv.org/abs/2402.09353
https://arxiv.org/abs/2405.17604

	Introduction
	Computing Activations With Gather-Scatter
	Gather-and-Scatter Activations for a Single Rank Slice
	Gather-and-Scatter Activations for all Rank Slices

	Two Types of Pruning
	Sparsity-Preserving Low-Rank Fine-Tuning
	Results for Sparsity-Preserving Low-Rank Fine-Tuning
	Background and Related Work
	Gather-Scatter
	Parameter-Efficient Fine Tuning

	Conclusion
	Acknowledgments
	References

