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Abstract—We present Alternating Greedy Scheduling (AGS),
an algorithm for avoiding overflow, specifically transient overflow,
during low-bitwidth accumulation of dot products in neural
network computations. In conventional quantized (e.g., 8-bit) dot
products, partial results are accumulated into wide (e.g., 32-bit)
accumulators to avoid overflows when accumulating intermediate
partial sums. However, such wide accumulators increase memory
bandwidth usage and reduce energy efficiency. We show that
iterative N:M pruning in floating point followed by quantization
to 8 (or fewer) bits, and accumulation of partial products in an
optimal order (via AGS) allows for accurate, compressed models
with a large number of partial products that do not require
wide accumulators. We design, analyze, and implement the AGS
algorithm to eliminate accumulation overflows at inference time
for several neural networks. Our method offers a 2.7x reduction
in accumulator bitwidth while achieving model accuracy on par
with floating-point baselines for multiple image classification
tasks.

I. INTRODUCTION

To utilize AI for the edge, low-power Internet of Things
(IoT) devices and tinyML applications have been employed
to perform a variety of tasks, including eye tracking, gesture
detection, motion detection, speech recognition, and head
movement detection [1]–[4]. There is a growing demand for
efficient implementations of AI with heavily limited memory,
bandwidth, and computation power. To this end, model com-
pression is essential for efficient inference on low-power de-
vices. Pruning and quantization are two common approaches to
compressing neural networks. Low-power devices for tinyML
typically have small local memories [5] and often lack support
for efficient floating-point computation [2], [6]. Hence quan-
tization is, by default, a necessity on such systems and most
tinyML models are quantized to 8 bits or less.

When performing quantized matrix multiplications, dot
products are typically accumulated into 32-bit registers. Re-
ducing accumulator bitwidth can reduce bandwidth and energy
usage while increasing inference throughput [7]–[9]. However,
if the partial product sum overflows the accumulator, its value
may be clipped to a finite range. This introduces numerical
errors into the final matrix result that degrade model accuracy
and limit how much we can reduce the accumulator bitwidth.

Prior works have attempted to reduce overflow in narrow
accumulators through regularization on the loss function [8]
or by controlling weight magnitude during training [7], [9].
While such approaches succeed in reducing overflows, they

Partial Products = [7, -5, -9, 4, 6, -4, -4, -3, 9, 6, -4, -7, 4, 7, 2, -7, -2, -3, 8, 5]
ACCUM_MAX = 10 ACCUM_MIN = -10

Positive Partial Products  :  7  | 4   6  | 9   6  | 4   7   2  | 8   5

Negative Partial Products  : 5   9  | 4   4   3  | 4   7  | 7   2   3 |

Reordered Sum = (7) – (5 + 9) + (4 + 6) – (4 + 4 + 3) + (9 + 6) 
– (4 + 7) + (4 + 7 + 2) – (7 + 2 + 3) + (8 + 5)

= 10

Fig. 1. Example of Alternating Greedy Scheduling (AGS) when summing
20 partial products into an accumulator that holds values in the range [-
10, 10]. The red lines mark when the running sum is about to overflow the
accumulator. The blue arrows depict how we alternate between adding from
positive and negative partial products to avoid overflow. Following the blue
arrows through the positive and negative lists reveals the reordered summation
where the running sum is always between -10 and +10 (no overflow). The
scheduling is greedy in the sense that it accumulates as many values of the
same sign as possible before switching to values of the opposite sign.

impose restrictive constraints on weights that may reduce
model accuracy [7], [8], [10]. Weight magnitude constraints
also promote unstructured sparsity in the network [7], which
is beneficial for reducing model size but difficult to accelerate.

We combine pruning and quantization with a novel over-
flow avoidance algorithm to enable low-precision (i.e., low-
bitwidth) accumulation in quantized neural networks (QNNs)
with minimal accuracy degradation. We characterize overflows
as persistent or transient, depending on whether the final
accumulation result overflows or only an intermediate partial
accumulation result overflows, respectively. Instead of reduc-
ing weight magnitude during training to reduce accumulator
magnitude during inference, we use structured N:M weight
pruning [11] to restrict dot product lengths (i.e., the number
of partial products) sufficiently to avoid most persistent over-
flows. We then avoid transient overflows that temporarily arise
during inference via a dot product algorithm that reorders the
partial products before accumulation (Section III-B). Figure
1 demonstrates our algorithm when accumulating a list of 20
partial products. The novel contributions of this paper are:

• Analysis of persistent and transient dot product overflow
in quantized neural networks (Section III-A)

• Alternating Greedy Schedule (AGS) for eliminating tran-
sient overflows (Section III-B).

• Evaluation of the resulting methods in terms of model
accuracy and accumulator compression for several neural
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networks on classification tasks (Section IV).

II. BACKGROUND

We consider uniform per-tensor quantization of both
weights and activations to b-bit signed values [12]. The set
of floating-point values in an activation matrix X has a range
R = max(X) −min(X). Unlike weights, activation ranges
vary greatly during inference so an acceptable range R is typi-
cally derived from activation statistics collected during training
[13]. To map values in X to integers in [0, 2b−1], we partition
R into 2b−1 uniform intervals of length sx = R

2b−1
, also called

the scale factor. For example, given an FP32 activation xf , its
quantized value xq = round(x

f

sx
) maps xf into [0, 2b − 1].

Since the FP32 range of activations are asymmetric around
0 after ReLU (all positive), we shift xq by an offset ox =
−2b−1 − round(min(X)

sx
) into the range [−2b−1, 2b−1 − 1],

guaranteeing that the FP32 value for 0 maps to an integer. We
can obtain the approximate FP32 representation of a quantized
activation xq by reversing the effect of the scale and offset via
the equation xf∗ = sx(x

q − ox). The difference |xf − xf∗| is
the quantization error. Analogous to activations, weights are
quantized such that wf∗ = sw(w

q − ow).
Multiplication of an M×K weight matrix and K×N acti-

vation matrix consists of M ·N dot products of length K. We
perform quantized dot product using the FP32 approximations.

sz(z − oz) =

K∑
i=1

sw(w
q
i − ow)sx(x

q
i − ox) (1)

where sz and oz represent the quantization parameters of
output activations z. The FP32 scale factor terms can be
factored out and normalized to an integer representation so the
entire computation occurs in integer arithmetic [12]. In prac-
tice, neural network weights approximate a normal distribution
symmetric about zero and popular neural network libraries
fix ow = 0 [12]–[15]. As a result, several terms under the
summation disappear and the majority of computation arises
from the integer dot product z =

∑K
i=1 w

q
i x

q
i .

III. ACCUMULATING IN LOW RESOLUTION

Consider the dot product
∑K

i=1 w
q
i x

q
i that arises when

weights and activations are both uniformly quantized to b
bits. Assume we accumulate partial results into a p-bit register
where each partial product wq

i x
q
i is 2b-bits and p > 2b. This

leaves p− 2b bits leftover for precision during accumulation.
Hence, our dot product may overflow when K ≥ 2p−2b.
For 8-bit quantization and a 32-bit accumulator, the threshold
K∗ = 2(32−2∗8) = 65536 is high enough to avoid overflow in
most popular neural networks. However, if we use a narrow
accumulator e.g., p = 2b, overflows are possible after sum-
ming only 2 partial products. To reliably use low-resolution
accumulators, we need a way of reducing such overflow.

A. Characterizing Overflows

We divide dot product overflows into two categories: per-
sistent and transient. A persistent overflow occurs when the
final dot product result overflows regardless of the order in

which partial products were added. In other words, a persistent
overflow is a true overflow where the final result is simply
too large for the accumulator. Transient overflows arise when
a partial result overflows but where the final result does
not actually overflow the accumulator. They are ‘temporary’
overflows, a direct consequence of the order of partial products
accumulation. Hence, we could potentially eliminate transient
overflows by accumulating in some optimal order.

In practice, ML frameworks for quantized networks avoid
overflow by either using high-precision accumulators (e.g., 32-
64 bits) or clipping partial results into a finite range (saturation
arithmetic) as they are accumulated [16]–[18]. We investigate
how clipping of persistent and/or transient overflows impacts
model accuracy while varying accumulator bit width. To this
end, we trained a 1-layer MLP (linear + ReLU) on the MNIST
dataset [19] with 8-bit weights and activations using QAT.

Clipping overflows results in poor model accuracy when
using accumulators narrower than 18 bits (Figure 2b green).
Assume we can resolve some dot product overflows by
temporarily using a high-precision accumulator for those dot
products. Figure 2a shows that at low resolutions of 13-
16 bits, only 3-24% of overflows are transient while the
rest are persistent (97-76%). However, if we resolve only
the transient overflows while continuing to clip all persistent
overflows, accuracy improves non-trivially from 10% to 40%
(Figure 2b red). This suggests that model accuracy becomes
more sensitive to clipping transient overflows, as opposed to
persistent overflows, when accumulator resolution decreases.

When we decrease accumulator bitwidth, initially both the
number of transient and persistent overflows will increase (17-
20 bits). However, as we continue decreasing bitwidth, most
overflows become persistent as the accumulator is too small to
fit most dot product results. As a result, the number of transient
overflows decreases (17 bits or fewer). (Note that an overflow
is not considered transient if the final result also overflows).
Beyond 13 bits, nearly all overflows will be persistent. If we
prune the network, the number of terms in the dot product
decreases, leading to a decrease in persistent overflows. How-
ever, several transient overflows will still remain and degrade
accuracy if not resolved (See Figure 3 magenta).

A2Q [7] eliminates the possibility of both transient and
persistent overflows by constraining the weight vector’s L1-
norm during QAT. They first bound the dot product result :

|
K∑
i=1

wq
i x

q
i | ≤

K∑
i=1

|wq
i ||x

q
i | ≤ 2p−1 − 1

In the worst case, all activations are maximal |xq
i | = 2b−1 and

the weight L1-norm may be bounded such that:
k∑

i=1

|wq
i | = ∥w

q∥1 ≤
2p−1 − 1

2b−1

This bound acts as an L1-regularizer and pulls most weight
values toward zero, ensuring that partial sums never grow be-
yond p bits. L1 regularization promotes unstructured sparsity
in the weight matrices, reducing the model size and enabling



acceleration by skipping zero computations. However, models
with unstructured sparsity are more difficult to accelerate
than structured sparse models on real hardware. Non-zero
values may be arbitrarily distributed and must be addressed
individually using indexing arrays, incurring computation and
memory storage overhead [20], [21].

We find that enforcing strict bounds on weight magnitude
is not necessary for using narrow accumulators. Instead, we
reduce the number of weights in each dot product via N:M
pruning. Then at inference time, we resolve transient overflows
by optimally reordering the dot product, as transient overflows
are simply a consequence of summation order.
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Fig. 2. Profile of overflows during MNIST inference of a 1-layer MLP with
8-bit weight/activations. Even though transient overflows only account for 3%
of total overflows when using narrow 13-16 bit accumulators (a), resolving
them improves accuracy from 10% to 40% (b) showing that for accumulators
with low bitwidths, transient overflows can have a larger impact on accuracy.

B. Alternating Greedy Scheduling (AGS)

AGS optimally reorders dot product summation to avoid
transient overflows that arise when adding the sequences of
partial products. We first split the sequence into a positive P
list and negative N list. We can then increase the running sum
(by adding from the positive list) or decrease the sum (by
adding from the negative list) at will. We prove that AGS
(Algorithm 1) correctness by induction for the case of no
persistent overflow.

Inductive Hypothesis: Initially, z = 0 and z satisfies the
invariant MIN VALUE ≤ z ≤ MAX VALUE. Assume that
after k iterations of the main loop, z satisfies the invariant.
We must show that after iteration k + 1, the invariant still
holds. During an iteration, we may accumulate into z from
either the positive or negative list.

Adding Positives: Assume we are accumulating into z
from the positive list P in the current iteration k + 1. Let
P [iP ] be the next positive number. We check if z + P [iP ] >
MAX VALUE. If true, we stop adding and switch to the N list
where additional sums are guaranteed to decrease z away from
MAX VALUE. Otherwise, we update z with z = z + P [iP ].
In both cases, z satisfies MIN VALUE ≤ z ≤ MAX VALUE
at the end of iteration k + 1.

Adding Negatives: Now assume instead we are accumu-
lating into z from the negative list N in the current iteration
k + 1. Let N [iN ] be the next negative number. We check if

Algorithm 1: Alternating Greedy Schedule
Input: List X containing K m-bit signed integers for

which the accumulated sum does not overflow,
i.e., no persistent overflow

Output: n-bit sum z without transient overflow
MAX VALUE = 2n−1 − 1; MIN VALUE = −2n−1;
// Split X into positive (P) and

negative (N) lists
for each x ∈ X do

if x > 0 then
Append x to P ;

if x < 0 then
Append x to N ;

z = 0; iP = 0; iN = 0;
// Alternating summation b/w P and N
while iP < |P | or iN < |N | do

while iP < |P | do
if z + P [iP ] > MAX VALUE then

break;
z← z + P [iP ];
iP ← iP + 1;

while iN < |N | do
if z +N [iN ] < MIN VALUE then

break;
z← z +N [iN ];
iN ← iN + 1;

return z;

z+N [iN ] < MIN VALUE. If true, we stop accumulating and
switch to the P list where additional sums are guaranteed to
increase z away from MIN VALUE. Otherwise, we update z
with z = z +N [iN ]. In both cases, z satisfies the invariant at
the end of iteration k + 1.

By induction, MIN VALUE ≤ z ≤ MAX VALUE for all
iterations and AGS correctly avoids transient overflows.

IV. EVALUATION

In this section, we evaluate our framework in terms of
accumulator compression and model accuracy for several
neural networks. We then perform RTL simulations of the AGS
algorithm to evaluate its impact on dot product throughput
and latency when performing neural network inference in the
context of practical CPU systems.

A. Software Library and Training Setup

Prior works have addressed the difficulty of analyzing tran-
sient overflows due to lack of support in standard deep learning
frameworks [7], [8]. We extend PyTorch’s quantization frame-
work with custom linear and convolution layers implementing
AGS to measure its impact on model accuracy. We unroll
dot product computations allowing the user to vary weight,
activation, and accumulator bitwidths and evaluate overflow
solutions such as AGS, clipping, wraparound arithmetic. To
our knowledge, our library is the first to enable fine-grained
analysis of quantized dot products in neural networks.



We evaluate AGS using MobileNetV2 [22] and ResNet-
18 [23] on CIFAR10 dataset [24]. We train these networks
with N:M semi-structured sparsity followed by post-training
uniform quantization via QAT. We iteratively prune all 2D-
convolution and linear layers except the first 2D convolution
and final linear classifier head. Every 10 epochs, we prune
the smallest 10% of values within each consecutive group of
M = 16 weights. For example in epoch 10, we set the smallest
2 out of 16 (≈ 10%) values to 0 while in epoch 20, we prune
such that 20% of weights are set to 0 (3 out of every 16 values).
We uniformly prune every layer to the same sparsity (%) and
enforce the same weight, activation, and accumulator bitwidths
across each layer (e.g., 5/7/12 weight/act/accum bitwidths for
all layers). Once the desired sparsity is reached, we continue
training the network until a total of 200 epochs have elapsed.

B. Reducing Accumulator Bitwidth

In this section, we evaluate the ability of AGS to enable
low-resolution accumulation while maintaining FP32 model
accuracy in ResNet-18 and MobileNetV2. We sweep the
design space by training several models with varying sparsity
and weight/ activation/accumulator bitwidths. We vary weight
and activations from 5 to 8 bits while varying the accumulator
from 11 to 24 bits. We select the best performing models with
the lowest required accumulator bitwidth to generate a pareto
frontier. For models on the frontier, we use our software library
to evaluate the accuracy impact when we clip dot product
overflows instead of avoiding them via AGS.

Figure 3 shows that AGS can push the accumulator bit width
lower than A2Q while also maintaining task performance.
Weights are roughly 80-95% sparse. While pruning can reduce
the length of individual dot products, transient overflows still
arise during inference. The magenta lines show that clipping
transient overflows within sparse dot products can limit how
much we may reduce accumulator bitwidth. AGS allows us to
avoid transient overflows and reduce accumulator resolution
by ≈ 4 bits while maintaining accuracy.
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Fig. 3. We visualize the trade-off between accumulator bitwidth and accuracy.
AGS (blue) can make use of accumulators with lower bitwidth than A2Q,
without sacrificing significant accuracy.

C. AGS Hardware Evaluation

We estimate AGS’s performance when running inference on
a single CPU core via behavioral simulation of Algorithm I
in RTL. Modern CPU’s are equipped with wide data buses in
the registers and cache (e.g., 512 bits) as well as SIMD units
that can perform multiple operations in parallel. We assume

the core’s SIMD unit can multiply two 8-element vectors
pairwise and write out 8 partial products over a wide bus
in a single cycle (8 ops/cycle). To match the SIMD unit’s
processing rate, the AGS unit must be able to accumulate
8 partial products every cycle. When implementing AGS in
RTL, we can separate 8 partial products into positive and
negative lists in a single cycle. However, the main loop of
the algorithm alternating summation between positive and
negative lists runs sequentially and performs only a single add
per cycle. Performing dot products using AGS alone would
result in a reduced throughput of 1 op/cycle.

We mitigate sequential computation overhead by employing
AGS only once the accumulator overflows. Specifically, we
start by accumulating partial products using SIMD instruc-
tions. If the running sum overflows the accumulator, we invoke
the AGS unit to sum the remaining partial products. We
perform MobileNetV2 inference (5-bit weight, 7-bit activation)
on a single batch of 100 CIFAR10 images and measure latency
when using AGS with different accumulator bitwidths (Figure
4). The baseline represents inference latency when traditional
SIMD instructions are used to perform dot products at a rate
of 8 multiply-accumulate (MAC) ops/cycle. When bitwidth is
14 or more, AGS introduces minimal overhead and latency
is similar to the baseline. However for narrower accumulators
of 12-13 bits, many dot products overflow early in the partial
product summation, triggering the sequential AGS algorithm
and slowing down the computation up to 2.5x. We plan on
improving performance of AGS hardware in future work.
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Fig. 4. We perform MobileNetV2
inference when using AGS with
different accumulator bitwidths.
At narrow bitwidths (12-13 bits),
many dot products overflow early
during partial product summation,
triggering the sequential AGS algo-
rithm and slowing down the com-
putation as much as 2.5x.

V. CONCLUSION

In this work, we use structured N:M pruning [11] to reduce
dot product length and avoid persistent overflows of the
accumulator during quantized inference. Then, we show that
by reordering dot product accumulations using AGS, we can
avoid transient overflows as well. These techniques together
form the proposed AGS method of this paper in achieving low-
bitwidth accumulation of dot products with minimal accuracy
degradation. Our evaluation results show that AGS reduces
accumulator bitwidth from 32 bits to 12 bits and outperforms
prior work by 2-5 bits. To the best of our knowledge, the AGS
method and our analysis are novel in the literature.
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